The Molecular Biology Core will provide expert and efficient laboratory services to Project 1 (Saper), Project 3 (Scammell), and Project 5 (Chamberiin). The major duties of Core B are management and genotyping of mouse colonies and performing in situ hybridization histochemistry. Core B will also produce new bacterial clones for in situ hybridization and new viral vectors as technology evolves. Core B is designed to optimize efficiency, accuracy, and expertise. The Core will manage large, shared mouse colonies to ensure a reliable and efficient supply of accurately genotyped mice for each Project. The Core also will centralize the performance of complex molecular techniques such as in situ hybridization histochemistry and bacterial culture so researchers in the Projects can focus on the science instead of debugging techniques Our years of experience with these methods maximizes the likelihood that the complicated molecular techniques proposed in this PPG will succeed.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL095491-04
Application #
8435432
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
4
Fiscal Year
2013
Total Cost
$194,202
Indirect Cost
$92,950
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02215
Yokota, Shigefumi; Kaur, Satvinder; VanderHorst, Veronique G et al. (2015) Respiratory-related outputs of glutamatergic, hypercapnia-responsive parabrachial neurons in mice. J Comp Neurol 523:907-20
Eckert, Danny J; Malhotra, Atul; Wellman, Andrew et al. (2014) Trazodone increases the respiratory arousal threshold in patients with obstructive sleep apnea and a low arousal threshold. Sleep 37:811-9
Pittman-Polletta, Benjamin; Hsieh, Wan-Hsin; Kaur, Satvinder et al. (2014) Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions. J Neurosci Methods 226:15-32
Sands, Scott A; Eckert, Danny J; Jordan, Amy S et al. (2014) Enhanced upper-airway muscle responsiveness is a distinct feature of overweight/obese individuals without sleep apnea. Am J Respir Crit Care Med 190:930-7
Shah, Ravi V; Abbasi, Siddique A; Heydari, Bobak et al. (2014) Obesity and sleep apnea are independently associated with adverse left ventricular remodeling and clinical outcome in patients with atrial fibrillation and preserved ventricular function. Am Heart J 167:620-6
Bakker, Jessie P; Edwards, Bradley A; Gautam, Shiva P et al. (2014) Blood pressure improvement with continuous positive airway pressure is independent of obstructive sleep apnea severity. J Clin Sleep Med 10:365-9
Yang, Chun; McKenna, James T; Zant, Janneke C et al. (2014) Cholinergic neurons excite cortically projecting basal forebrain GABAergic neurons. J Neurosci 34:2832-44
McSharry, David G; Saboisky, Julian P; Deyoung, Pam et al. (2014) Physiological mechanisms of upper airway hypotonia during REM sleep. Sleep 37:561-9
Zielinski, Mark R; Kim, Youngsoo; Karpova, Svetlana A et al. (2014) Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neurosci Lett 580:27-31
Weng, F J; Williams, R H; Hawryluk, J M et al. (2014) Carbachol excites sublaterodorsal nucleus neurons projecting to the spinal cord. J Physiol 592:1601-17

Showing the most recent 10 out of 76 publications