The Administrative Core has three major responsibilities. The first is to facilitate the various administrative aspects associated with the business of running the program including record keeping, scheduling, financial bookkeeping, progress reports, manuscripts, etc. The second is to foster scientific progress and coordination, both between projects and program investigators, but also with scientists outside of the participating universities. This includes coordinating communications and travel between the locations of the Project Leaders, the Medical College of Georgia and the University of Utah as well as the Co-Investigator at the University of Texas at San Antonio. Finally, the Administrative Core will provide biostatistical, database management, and computing resources for each of the projects in the program.

Public Health Relevance

The Program Project focuses on elucidating mechanisms by which the kidney controls sodium excretion, and therefore, has direct relevance to the serious health problem of salt-dependent hypertension and kidney disease. The Administrative Core plays an important role in coordinating these activities, which is particularly important in the current program due to the integration of diverse range of scientific expertise.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
7P01HL095499-05
Application #
8899991
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Maric-Bilkan, Christine
Project Start
Project End
Budget Start
2014-08-05
Budget End
2015-04-30
Support Year
5
Fiscal Year
2014
Total Cost
$82,619
Indirect Cost
$25,849
Name
University of Alabama Birmingham
Department
Type
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Kang, Kyu-Tae; Sullivan, Jennifer C; Pollock, Jennifer S (2018) Superoxide Dismutase Activity in Small Mesenteric Arteries Is Downregulated by Angiotensin II but Not by Hypertension. Toxicol Res 34:363-370
De Miguel, Carmen; Sedaka, Randee; Kasztan, Malgorzata et al. (2018) Tauroursodeoxycholic acid (TUDCA) abolishes chronic high salt-induced renal injury and inflammation. Acta Physiol (Oxf) :e13227
Johnston, Jermaine G; Pollock, David M (2018) Circadian regulation of renal function. Free Radic Biol Med 119:93-107
Guan, Z; Wang, F; Cui, X et al. (2018) Mechanisms of sphingosine-1-phosphate-mediated vasoconstriction of rat afferent arterioles. Acta Physiol (Oxf) 222:
De Miguel, Carmen; Hamrick, William C; Hobbs, Janet L et al. (2017) Endothelin receptor-specific control of endoplasmic reticulum stress and apoptosis in the kidney. Sci Rep 7:43152
Gohar, Eman Y; Kasztan, Malgorzata; Pollock, David M (2017) Interplay between renal endothelin and purinergic signaling systems. Am J Physiol Renal Physiol 313:F666-F668
Guan, Zhengrong; Singletary, Sean T; Cha, Haword et al. (2016) Pentosan polysulfate preserves renal microvascular P2X1 receptor reactivity and autoregulatory behavior in DOCA-salt hypertensive rats. Am J Physiol Renal Physiol 310:F456-65
Hyndman, Kelly Anne; Dugas, Courtney; Arguello, Alexandra M et al. (2016) High salt induces autocrine actions of ET-1 on inner medullary collecting duct NO production via upregulated ETB receptor expression. Am J Physiol Regul Integr Comp Physiol 311:R263-71
Heimlich, J Brett; Speed, Joshua S; O'Connor, Paul M et al. (2016) Endothelin-1 contributes to the progression of renal injury in sickle cell disease via reactive oxygen species. Br J Pharmacol 173:386-95
Davenport, Anthony P; Hyndman, Kelly A; Dhaun, Neeraj et al. (2016) Endothelin. Pharmacol Rev 68:357-418

Showing the most recent 10 out of 66 publications