The Lipid Mass Spectrometry Core is to provide support for all PPG Projects with state-of-the-art technology to quantify sphingosine-1-phosphate (SIP) and related signaling sphingolipids in tissues, biological fluids and endothelial cells. The task of reliable and sensitive quantitation of sphingolipid mediators and other small molecules derived from biological samples under normal and pathological conditions, in the presence of complex mixture of closely related compounds, is best resolved by tandem mass spectrometry in conjunction with liquid chromatography (LC/MS/MS). The Lipid Mass Spectrometry Core is equipped with AB Sciex 5500 Qtrap triple quadrupole-ion trap hybrid mass spectrometer and we have already developed reliable and sensitive electrospray ionization-tandem mass spectrometry-based methods for quntitation of major signaling sphingolipids such as SIP, ceramides and sphingoid bases as well as their synthetic analogs FTY720, its phosphate and phosphonate derivatives. Cellular and tissue samples generated within all 4 projects of the program will be centrally analyzed to provide uniformity and quality control to quantitative sphingolipid analyses within the Program Project. This approach will help integrate projects since SIP/ceramide changes are increasingly implicated in endotoxinand radiation-induced lung injury (Project 1), are potentially linked to the dynamic changes of SIP receptors during endotoxin- and radiation-induced lung injury (Project 2 and 4), are instrumental in mediating FTY720- phosphonate based therapies (Project 3), and might be biomarkers for the development of acute lung injury (Project 2) and radiation-induced pneumonitis (Project 4). SIP-ceramide levels can be manipulated via sphingosine kinases, SIP lyase (Project 1) and by FTY720P or its analogs (Project 3). The Mass Spectrometry Core is also integrated with other Core facilities and research programs of the University of Chicago with major emphasis on quantitation of lipid mediators involved in signal transduction, cardiovascular and pulmonary diseases. In summary. Mass Spectrometry Core will be central in providing data on signaling sphingolipidom changes as a result of acute lung injury and radiation-induced pneumonitis.

Public Health Relevance

Signaling sphingolipids are deeply involved in the development and resolution of Acute Lung Injury and radiation-induced pneumonitis. Lipid Mass Spectrometry Core will centralize the analyses of signaling sphingolipids and their synthetic analogs thus providing the uniformity of the analysis throughout the entire Program Project.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL098050-03
Application #
8502322
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
3
Fiscal Year
2013
Total Cost
$215,316
Indirect Cost
$78,172
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Ackerman, Steven J; Park, Gye Young; Christman, John W et al. (2016) Polyunsaturated lysophosphatidic acid as a potential asthma biomarker. Biomark Med 10:123-35
Camp, Sara M; Chiang, Eddie T; Sun, Chaode et al. (2016) "Pulmonary Endothelial Cell Barrier Enhancement by Novel FTY720 Analogs: Methoxy-FTY720, Fluoro-FTY720, and β-Glucuronide-FTY720". Chem Phys Lipids 194:85-93
Ebenezer, David L; Fu, Panfeng; Natarajan, Viswanathan (2016) Targeting sphingosine-1-phosphate signaling in lung diseases. Pharmacol Ther 168:143-157
Viswanathan, P; Ephstein, Y; Garcia, J G N et al. (2016) Differential elastic responses to barrier-altering agonists in two types of human lung endothelium. Biochem Biophys Res Commun 478:599-605
Black, Katharine E; Berdyshev, Evgeny; Bain, Gretchen et al. (2016) Autotaxin activity increases locally following lung injury, but is not required for pulmonary lysophosphatidic acid production or fibrosis. FASEB J 30:2435-50
Ebenezer, David L; Fu, Panfeng; Suryadevara, Vidyani et al. (2016) Epigenetic regulation of pro-inflammatory cytokine secretion by sphingosine 1-phosphate (S1P) in acute lung injury: Role of S1P lyase. Adv Biol Regul :
Jiang, Ying; Sverdlov, Maria S; Toth, Peter T et al. (2016) Phosphatidic Acid Produced by RalA-activated PLD2 Stimulates Caveolae-mediated Endocytosis and Trafficking in Endothelial Cells. J Biol Chem 291:20729-38
Zhang, Chongben; Hwarng, Gwen; Cooper, Daniel E et al. (2015) Inhibited insulin signaling in mouse hepatocytes is associated with increased phosphatidic acid but not diacylglycerol. J Biol Chem 290:3519-28
Huang, Long Shuang; Berdyshev, Evgeny V; Tran, John T et al. (2015) Sphingosine-1-phosphate lyase is an endogenous suppressor of pulmonary fibrosis: role of S1P signalling and autophagy. Thorax 70:1138-48
Letsiou, Eleftheria; Sammani, Saad; Zhang, Wei et al. (2015) Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding. Am J Respir Cell Mol Biol 52:193-204

Showing the most recent 10 out of 48 publications