Core A (Administrative Core), led by the Program's Principal Investigator, Viswanathan Natarajan, Ph.D., will provide essential administrative and secretarial support and ensure overall direction and organization of the entire Program. In addition, this Core will provide accounting support that will ensure appropriate-fiscal and scientific oversight, monitoring and compliance with federal and institutional grant management regulations, the latter through several formal mechanisms. The objectives of the Administrative core are (i) centralization of all administrative actions and financial recording keeping, (ii) to provide statistical and data processing support for the projects (iii) to prepare scientific and financial reports as required by the university and the NHLBI, (iv) to ensure that the PPG research meets the highest standards through periodic review by the internal and external review panels, (v) to facilitate the use of common resources, (vi) to foster exchange of scientific information and ideas and (vi) provide the projects and cores with a review of all expenditures on a monthly basis and deal with University Accounting and Grants offices concerning grant budgets. Core A will coordinate the inter-project, inter-departmental, and inter-institutional collaborative arrangements and evolve new arrangements as deemed necessary for the scientific progress of the Program Project as a whole. Core personnel will orchestrate monthly meetings of the project leaders that will be held to discuss scientific and administrative matters. Core A will organize regular research seminars on a weekly basis, which will allow PPG investigators to present their work in progress to other researchers. Coordinated administrative services will ensure optimal purchasing practices, facilitate communications, and promote scientific interaction.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL098050-04
Application #
8676886
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
4
Fiscal Year
2014
Total Cost
$66,264
Indirect Cost
$17,493
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Huang, Long Shuang; Natarajan, Viswanathan (2015) Sphingolipids in pulmonary fibrosis. Adv Biol Regul 57:55-63
Ni, Xiuqin; Epshtein, Yulia; Chen, Weiguo et al. (2014) Interaction of integrin ?4 with S1P receptors in S1P- and HGF-induced endothelial barrier enhancement. J Cell Biochem 115:1187-95
Wolfson, Rachel K; Mapes, Brandon; Garcia, Joe G N (2014) Excessive mechanical stress increases HMGB1 expression in human lung microvascular endothelial cells via STAT3. Microvasc Res 92:50-5
Chen, Jiwang; Tang, Haiyang; Sysol, Justin R et al. (2014) The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension. Am J Respir Crit Care Med 190:1032-43
Testai, Fernando D; Kilkus, John P; Berdyshev, Evgeny et al. (2014) Multiple sphingolipid abnormalities following cerebral microendothelial hypoxia. J Neurochem 131:530-40
Usatyuk, Peter V; Fu, Panfeng; Mohan, Vijay et al. (2014) Role of c-Met/phosphatidylinositol 3-kinase (PI3k)/Akt signaling in hepatocyte growth factor (HGF)-mediated lamellipodia formation, reactive oxygen species (ROS) generation, and motility of lung endothelial cells. J Biol Chem 289:13476-91
Adyshev, Djanybek M; Elangovan, Venkateswaran Ramamoorthi; Moldobaeva, Nurgul et al. (2014) Mechanical stress induces pre-B-cell colony-enhancing factor/NAMPT expression via epigenetic regulation by miR-374a and miR-568 in human lung endothelium. Am J Respir Cell Mol Biol 50:409-18
Huang, Long Shuang; Mathew, Biji; Li, Haiquan et al. (2014) The mitochondrial cardiolipin remodeling enzyme lysocardiolipin acyltransferase is a novel target in pulmonary fibrosis. Am J Respir Crit Care Med 189:1402-15
Wang, Lichun; Sammani, Saad; Moreno-Vinasco, Liliana et al. (2014) FTY720 (s)-phosphonate preserves sphingosine 1-phosphate receptor 1 expression and exhibits superior barrier protection to FTY720 in acute lung injury. Crit Care Med 42:e189-99
Makarenko, Vladislav V; Usatyuk, Peter V; Yuan, Guoxiang et al. (2014) Intermittent hypoxia-induced endothelial barrier dysfunction requires ROS-dependent MAP kinase activation. Am J Physiol Cell Physiol 306:C745-52

Showing the most recent 10 out of 25 publications