The Notch pathway, as well as potential regulators or effectors HIFa/Notch signaling, have emerged as particularly relevant for establishing and maintaining heart function under hypoxic stress conditions. We generated/collected mutations of HIFa and Notch signaling in multiple cardiac compartments. We have gathered data suggesting that genetic ablation of Notch pathway activity in the mouse myocardium does not lead to cardiac remodeling in response to hypoxic conditions caused by myocardial infarction, but rather has a protective effect on cardiomyocytes after the infarct. Moreover, in the Drosophila heart model, an acute response to hypoxia (slowing of the heart rate) does not occur when Notch signaling is activated in the heart, and chronic hypoxia leads to a non-contractile, infarct-like condition of the heart. In contrast, HIF/Notch mutations in the mouse epicardium are deleterious to heart function, in that the response to transaortic constriction is aggravated and cardiac hypertrophy is increased. Thus, the epicardium plays also a critical role in the cardiac response to hypoxia. Thus, modulation of HIF as well as Notch signaling in various cardiac compartments is critical for the heart to respond and tolerate hypoxic conditions. We hypothesize that the interaction between HIF and Notch pathways are key to the regulation of the response to hypoxia, that HIF/Notch signaling elicits unique responses in the myocardium versus the epicardium, and that the HIF/Notch-dependent mechanisms protect cardiac function. In this proposal, we will study the respective contribution and interactions of HIF and Notch signaling to hypoxia tolerance and susceptibility in the heart. Based on the evolutionary conservation of the hypoxia response, mechanisms of cardiac hypoxia responses identified in the fly heart, involving HIF and Notch signaling, promise to be of relevance to the mammalian heart. Insights gained here are likely to lead to new avenues for finding treatments for hypoxia-induced cardiac injury.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
5P01HL098053-05
Application #
8694079
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Yamamura, Hisao; Yamamura, Aya; Ko, Eun A et al. (2014) Activation of Notch signaling by short-term treatment with Jagged-1 enhances store-operated Ca(2+) entry in human pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 306:C871-8
Smith, Kimberly A; Yuan, Jason X-J (2014) Hypoxia-inducible factor-1? in pulmonary arterial smooth muscle cells and hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med 189:245-6
Lim, Hui-Ying; Wang, Weidong; Chen, Jianming et al. (2014) ROS regulate cardiac function via a distinct paracrine mechanism. Cell Rep 7:35-44
Nishimura, Mayuko; Kumsta, Caroline; Kaushik, Gaurav et al. (2014) A dual role for integrin-linked kinase and ?1-integrin in modulating cardiac aging. Aging Cell 13:431-40
Kang, Yunyi; Tiziani, Stefano; Park, Goonho et al. (2014) Cellular protection using Flt3 and PI3K? inhibitors demonstrates multiple mechanisms of oxidative glutamate toxicity. Nat Commun 5:3672
Song, Shanshan; Yamamura, Aya; Yamamura, Hisao et al. (2014) Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am J Physiol Cell Physiol 307:C373-83
Lathen, Christopher; Zhang, Yu; Chow, Jennifer et al. (2014) ERG-APLNR axis controls pulmonary venule endothelial proliferation in pulmonary veno-occlusive disease. Circulation 130:1179-91
Pfeiffer, E R; Wright, A T; Edwards, A G et al. (2014) Caveolae in ventricular myocytes are required for stretch-dependent conduction slowing. J Mol Cell Cardiol 76:265-74
Ronen, Roy; Zhou, Dan; Bafna, Vineet et al. (2014) The genetic basis of chronic mountain sickness. Physiology (Bethesda) 29:403-12
Gan, Zhuohui; Wang, Jianwu; Salomonis, Nathan et al. (2014) MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data. BMC Bioinformatics 15:69

Showing the most recent 10 out of 34 publications