The overall goal of the Systems Biology Core (Core B) is to provide experience, training and facilities for high-throughput measurements, together with expertise in bioinformatics and systems analysis in order to help the project investigators of the PPG to generate and test new hypotheses on systems-level mechanisms of short- and long-term hypoxia tolerance and susceptibility. Specifically, Core B will provide expertise and resources to: (a) acquire and analyze high-throughput data in humans, mice and flies on gene expression and genetic sequence variations in the context of hypoxia and the signaling pathways of interest; (b)acquire and analyze metabolic profiles and activity under normal and hypoxic conditions by NMR metabolomics, metabolic network reconstruction, and computational modeling;(c) to perform specific phenotypic measurements in flies and mice and develop computational models of physiological dynamics; and (d) deployment and curation of a physiological database and a web site and web-based tools for timely dissemination of data and findings. Core B will bring expertise in microarrays and pathway analysis, metabolic biochemistry and metabolomics, bioengineering and systems biology to work with all three projects and Core C in a variety of measurements and data analysis. In addition. Core B will be responsible for the web-based deployment and maintenance of data dissemination resources for the program project.

Public Health Relevance

In the proposed PPG, the participating research projects will study adaptive mechanisms to hypoxia in cardiovascular and central nervous systems with the goal of identifying molecular signatures of hypoxia tolerance and susceptibility that will be relevant and useful clinically. The core will assist in these goals by providing systems biology tools and expertise to help the project to analyze gene expression, identify signaling pathways, determine molecular signatures and understand integrative mechanisms.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
La Jolla
United States
Zip Code
Yamamura, Hisao; Yamamura, Aya; Ko, Eun A et al. (2014) Activation of Notch signaling by short-term treatment with Jagged-1 enhances store-operated Ca(2+) entry in human pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 306:C871-8
Smith, Kimberly A; Yuan, Jason X-J (2014) Hypoxia-inducible factor-1? in pulmonary arterial smooth muscle cells and hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med 189:245-6
Lim, Hui-Ying; Wang, Weidong; Chen, Jianming et al. (2014) ROS regulate cardiac function via a distinct paracrine mechanism. Cell Rep 7:35-44
Nishimura, Mayuko; Kumsta, Caroline; Kaushik, Gaurav et al. (2014) A dual role for integrin-linked kinase and ?1-integrin in modulating cardiac aging. Aging Cell 13:431-40
Kang, Yunyi; Tiziani, Stefano; Park, Goonho et al. (2014) Cellular protection using Flt3 and PI3K? inhibitors demonstrates multiple mechanisms of oxidative glutamate toxicity. Nat Commun 5:3672
Song, Shanshan; Yamamura, Aya; Yamamura, Hisao et al. (2014) Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am J Physiol Cell Physiol 307:C373-83
Lathen, Christopher; Zhang, Yu; Chow, Jennifer et al. (2014) ERG-APLNR axis controls pulmonary venule endothelial proliferation in pulmonary veno-occlusive disease. Circulation 130:1179-91
Pfeiffer, E R; Wright, A T; Edwards, A G et al. (2014) Caveolae in ventricular myocytes are required for stretch-dependent conduction slowing. J Mol Cell Cardiol 76:265-74
Ronen, Roy; Zhou, Dan; Bafna, Vineet et al. (2014) The genetic basis of chronic mountain sickness. Physiology (Bethesda) 29:403-12
Gan, Zhuohui; Wang, Jianwu; Salomonis, Nathan et al. (2014) MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data. BMC Bioinformatics 15:69

Showing the most recent 10 out of 34 publications