High density lipoprotein (HDL) plays a major role in cholesterol homeostasis and atherosclerosis. Yet our understanding of its structure, interactions with HDL-associated proteins, and alterations in function during atherosclerosis, remain poorly understood. We propose to use a multidisciplinary approach to better understand how distinct structural elements of HDL facilitate specific biological functions in reverse cholesterol transport (ROT) and may become "dysfunctional" through site-specific oxidative modification within human atherosclerotic plaque. We have developed novel tools for structurally, functionally and clinically characterizing dysfunctional forms of HDL and their involvement in human disease. We will employ these to achieve our overall major goals of: (i) defining HDL function and site-specific oxidative modifications within human atherosclerotic plaque that adversely impact upon normal lipoprotein function; and (ii) exploring the clinical utility of quantifying specific "dysfunctional" HDL forms in human clinical studies. We will achieve this with the following specific aims:
Aim 1) To define important structural elements critical for nascent HDL particle interaction with LOAT and maturation into a cholesterol-ester laden spheroidal form, and to test the hypothesis that site-specific oxidative modifications of apoAl Tyr166, a known functional residue in the LOAT interaction site modified within human atherosclerotic plaque, generates both a "dysfunctional" form of HDL and identifies individuals at increased risk for atherosclerotic heart disease.
Aim 2) To discover the structural modification induced by MPO-catalyzed oxidation on apoA1 of HDL that converts the particle into a pro-inflammatory form and to test the hypothesis that MPO-specific oxidative modification of HDL identifies individuals at increased risk for atherosclerotic heart disease. Collectively, the proposed studies represent an innovative and multidisciplinary approach designed to elaborate key structural elements of HDL that support specific atheroprotective functions and how site specific oxidative modifications to specific residues in vivo adversely impacts upon normal lipoprotein function and generate distinct "dysfunctional" HDL forms of potential clinical prognostic utility.

Public Health Relevance

The proposed studies will provide new insights into how specific structural features of high density lipoprotein (HDL) contribute to its normal biological functions in reverse cholesterol transport. They also explore the role of structurally distinct site-specific oxidative modifications to apoAl of HDL in altered athero-protective functions of the lipoprotein in humans. The studies will help identify new diagnostic tests for heart disease risk prediction, and potential therapeutic targets for treatment and prevention of heart disease.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cleveland Clinic Lerner
United States
Zip Code
Tang, W H Wilson; Wang, Zeneng; Shrestha, Kevin et al. (2015) Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail 21:91-6
Grodin, Justin L; Hammadah, Muhammad; Fan, Yiying et al. (2015) Prognostic value of estimating functional capacity with the use of the duke activity status index in stable patients with chronic heart failure. J Card Fail 21:44-50
Grodin, Justin L; Neale, Sarah; Wu, Yuping et al. (2015) Prognostic comparison of different sensitivity cardiac troponin assays in stable heart failure. Am J Med 128:276-82
Tang, W H Wilson; Hazen, Stanley L (2014) The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 124:4204-11
Hartiala, Jaana; Bennett, Brian J; Tang, W H Wilson et al. (2014) Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and L-carnitine. Arterioscler Thromb Vasc Biol 34:1307-13
Shao, Zhili; Zhang, Renliang; Shrestha, Kevin et al. (2014) Usefulness of elevated urine neopterin levels in assessing cardiac dysfunction and exercise ventilation inefficiency in patients with chronic systolic heart failure. Am J Cardiol 113:1839-43
Brown, J Mark; Hazen, Stanley L (2014) Metaorganismal nutrient metabolism as a basis of cardiovascular disease. Curr Opin Lipidol 25:48-53
Duivenvoorden, Raphaƫl; Tang, Jun; Cormode, David P et al. (2014) A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun 5:3065
Feig, Jonathan E; Hewing, Bernd; Smith, Jonathan D et al. (2014) High-density lipoprotein and atherosclerosis regression: evidence from preclinical and clinical studies. Circ Res 114:205-13
Brown, J Mark; Hazen, Stanley L (2014) Seeking a unique lipid signature predicting cardiovascular disease risk. Circulation 129:1799-803

Showing the most recent 10 out of 79 publications