Gram positive infections make up ~50% of all acute lung injury cases with Streptococcus pneumonia infections accounting for 45% of all community-acquired pneumonia (CAP) cases. CAP is accompanied by extensive permeability edema, characterized by a disruption in endothelial barrier integrity. A major factor in the severity of CAP is the secretion of bacterial virulence factors predominantly pneumolysin (PLY) and family member listeriolysin-0 (LLO). These gram positive virulence factors make plasma membrane pores that cause a Ca2+-influx in various cell types, stimulate host PLC activity and as we have recently shown, activate protein kinase C alpha (PKCalpha). Previously we showed that inhibition of PKCalpha is barrier protective against these gram-positive virulence factors. Further, this is due, at least in part, to the ability of PKC alpha to increase production of reactive oxygen- and -nitrogen species associated. LLO induces eNOS uncoupling, enhances peroxynitrite generation, and causes an increase in RhoA and Rac 1 nitration resulting in activation of the former and inhibition of the latter. This project will focus on distinct mechanisms of eNOS uncoupling that we hypothesize occurs via the PKCalpha mediated phosphorylation of eNOS at Thr495 rather than through increased ADMA generation (see Project 1). From our previously published studies and new preliminary data, the overall hypothesis that we will test in this proposal is that inhibition of PKCalpha leads to the enhanced release of NO from eNOS which stimulates the S-nitrosylation of RhoA and Rac 1. This modification leads to RhoA inhibition and Rac1 activation and EC barrier protection.
Specific Aim 1 will determine the mechanism by which PKCalpha mediates PLY/LLO driven eNOS uncoupling.
Specific Aim 2 will determine if PKCalpha-mediated increases in NO signaling attenuate the endothelial barrier disruption induced by PLY and LLO and whether this occurs via the S-nitrosylation of RhoA and Rac1.
This Aim will also identify the specific cytokine residues on RhoA and Rac1 that are nitrosylated.
Specific Aim 3 will determine the relative effects of reducing PKCalpha activity and directly enhancing RhoA and Rac1 Snitrosylation in protecting the endothelial barrier during ALI in vivo.

Public Health Relevance

The overall goal of this Project 4 is to further our understanding of the molecular mechanisms by which the Gram + exotoxins disrupt the pulmonary endothelial cell barrier. Specifically we will investigate novel mechanisms and therapeutics controling the function of eNOS and ultimately the balance of RhoA/Rac activity in the endothelial hyperpermeability associated with acute lung injury (ALI).

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL101902-03
Application #
8508291
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
3
Fiscal Year
2013
Total Cost
$335,580
Indirect Cost
$111,860
Name
Georgia Regents University
Department
Type
DUNS #
966668691
City
Augusta
State
GA
Country
United States
Zip Code
30912
Pati, Paramita; Fulton, David J R; Bagi, Zsolt et al. (2016) Low-Salt Diet and Circadian Dysfunction Synergize to Induce Angiotensin II-Dependent Hypertension in Mice. Hypertension 67:661-8
Rafikova, Olga; Meadows, Mary L; Kinchen, Jason M et al. (2016) Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung. PLoS One 11:e0150480
Fulton, David J R; Barman, Scott A (2016) Clarity on the Isoform-Specific Roles of NADPH Oxidases and NADPH Oxidase-4 in Atherosclerosis. Arterioscler Thromb Vasc Biol 36:579-81
Chen, Qiumei; Varga, Monika; Wang, Xiaoyin et al. (2016) Overexpression of Nitric Oxide Synthase Restores Circulating Angiogenic Cell Function in Patients With Coronary Artery Disease: Implications for Autologous Cell Therapy for Myocardial Infarction. J Am Heart Assoc 5:
de la Vega, Montserrat Rojo; Dodson, Matthew; Gross, Christine et al. (2016) Role of Nrf2 and Autophagy in Acute Lung Injury. Curr Pharmacol Rep 2:91-101
Kovacs, Laszlo; Han, Weihong; Rafikov, Ruslan et al. (2016) Activation of Calpain-2 by Mediators in Pulmonary Vascular Remodeling of Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 54:384-93
Kovacs-Kasa, Anita; Gorshkov, Boris A; Kim, Kyung-Mi et al. (2016) The protective role of MLCP-mediated ERM dephosphorylation in endotoxin-induced lung injury in vitro and in vivo. Sci Rep 6:39018
Sun, Xutong; Kellner, Manuela; Desai, Ankit A et al. (2016) Asymmetric Dimethylarginine Stimulates Akt1 Phosphorylation via Heat Shock Protein 70-Facilitated Carboxyl-Terminal Modulator Protein Degradation in Pulmonary Arterial Endothelial Cells. Am J Respir Cell Mol Biol 55:275-87
Chen, Feng; Li, Xueyi; Aquadro, Emily et al. (2016) Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension. Free Radic Biol Med 99:167-178
Romero, Maritza J; Lucas, Rudolf; Dou, Huijuan et al. (2016) Role of growth hormone-releasing hormone in dyslipidemia associated with experimental type 1 diabetes. Proc Natl Acad Sci U S A 113:1895-900

Showing the most recent 10 out of 73 publications