The purpose of the Asthma Biorepository Core Tissue Processing and Cell Culture Core (Core C) component of this TPPG is to provide centralized expert handling of clinical samples obtained from human subjects by the Clinical Core. The tissue processing and cell culture activities of Core C will convert the clinical samples into materials (ainway cells, fiuid, slides, etc.) required for the research proposed in all four Projects. This core will also utilize explanted lungs to culture and provide human primary smooth muscle, fibroblast and epithelial cells to the projects in this TPPG. Furthermore, the Core will also work closely with Core D regarding the culturing of mouse smooth muscle cells and tracheal epithelial cells. There are many advantages to having these activities done by a single Core facility rather than in each investigator's own laboratory. Foremost, the personnel staffing of the Core are highly experienced in performing the required procedures in a meticulous and standardized manner. In addition Core C will be responsible for ensuring that samples are properiy characterized, inventoried, stored, and that data is maintained in a data base with appropriate access to TPPG investigators and other cores. In this capacity, the Core will allow for each clinical sample to be utilized to its full potential in multiple Projects. This Core will interact closely with all Cores in this TPPG to maintain the extensive database required to catalog and manage the processed clinical materials and generate coherent links among experimental results obtained with these materials.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL103453-01
Application #
7982569
Study Section
Special Emphasis Panel (ZHL1-CSR-A (M1))
Project Start
Project End
Budget Start
2011-08-02
Budget End
2012-06-30
Support Year
1
Fiscal Year
2011
Total Cost
$183,106
Indirect Cost
Name
Cleveland Clinic Lerner
Department
Type
DUNS #
135781701
City
Cleveland
State
OH
Country
United States
Zip Code
44195
Barnes, Jarrod W; Kucera, Elif T; Tian, Liping et al. (2016) Bone Morphogenic Protein Type 2 Receptor Mutation-Independent Mechanisms of Disrupted Bone Morphogenetic Protein Signaling in Idiopathic Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 55:564-575
Erzurum, Serpil C (2016) New Insights in Oxidant Biology in Asthma. Ann Am Thorac Soc 13 Suppl 1:S35-9
Gu, Xiaodong; Huang, Ying; Levison, Bruce S et al. (2016) Identification of Critical Paraoxonase 1 Residues Involved in High Density Lipoprotein Interaction. J Biol Chem 291:1890-904
Reeves, Stephen R; Kaber, Gernot; Sheih, Alyssa et al. (2016) Subepithelial Accumulation of Versican in a Cockroach Antigen-Induced Murine Model of Allergic Asthma. J Histochem Cytochem 64:364-80
Wang, Zeneng; DiDonato, Joseph A; Buffa, Jennifer et al. (2016) Eosinophil Peroxidase Catalyzed Protein Carbamylation Participates in Asthma. J Biol Chem 291:22118-22135
Zein, Joe G; Menegay, Michelle C; Singer, Mendel E et al. (2016) Cost effectiveness of bronchial thermoplasty in patients with severe uncontrolled asthma. J Asthma 53:194-200
Liu, Fei; Haeger, Christina Mallarino; Dieffenbach, Paul B et al. (2016) Distal vessel stiffening is an early and pivotal mechanobiological regulator of vascular remodeling and pulmonary hypertension. JCI Insight 1:
Asosingh, Kewal; Vasanji, Amit; Tipton, Aaron et al. (2016) Eotaxin-Rich Proangiogenic Hematopoietic Progenitor Cells and CCR3+ Endothelium in the Atopic Asthmatic Response. J Immunol 196:2377-87
Xu, Weiling; Ghosh, Sudakshina; Comhair, Suzy A A et al. (2016) Increased mitochondrial arginine metabolism supports bioenergetics in asthma. J Clin Invest 126:2465-81
Yuan, Yiyuan; Hakimi, Parvin; Kao, Clara et al. (2016) Reciprocal Changes in Phosphoenolpyruvate Carboxykinase and Pyruvate Kinase with Age Are a Determinant of Aging in Caenorhabditis elegans. J Biol Chem 291:1307-19

Showing the most recent 10 out of 105 publications