Core B: Pre Clinical Animal Models of PAH The overall goals of the Pre-clinical Core are to provide expertise and novel assessments of pulmonary hypertension and right ventricular function in animal models that support TPPG projects and investigators. The Core will be directed by Dr. Karen Norris, who will lead the development of the non-human primate model of PAH and evaluation of candidate molecules developed in Projects 2 and 3. Dr. Hunter Champion will lead studies involving assessment of PAH in established rodent models utilized in Projects all Projects. The development of a novel, non-human primate model of PH, coupled with the extensive expertise in established mouse and rat models will provide a comprehensive evaluation of mechanistic pathways associated with disease progression. In addition, these models will be utilized by all Projects to evaluate genetic and environmental differences, as well as the effect of candidate small molecules on the progression of PH. Goals of the Core will be accomplished through the following SPECIFIC AIMS:
Aim 1 will provide expertise and novel assessments of pulmonary hypertension and right ventricular function in mouse and rat models of pulmonary hypertension. Model assessments include micro-right heart catheterization, miliar assessments of right ventricular pressure and volume loops, Fulton-index, and exercise capacity. Validated available models include the hypoxia-exposed mouse, the VEGF inhibition mouse model, the monocrotyline exposed rat and mouse, the pulmonary artery banded mouse, and the smoked emphysema mouse with pulmonary hypertension.
In Aim 2 we will further develop and characterize a primate model of pulmonary hypertension secondary to humanized simian immunodeficiency virus infection. The model will be characterized with CT-angiograms, PET/CT, right heart catheterization with assessments of pulmonary artery stiffness and RV pressure-volume function, RV and pulmonary pathology, and molecular characterization of pulmonary vasculature and RV by gene expression analysis. These studies will establish a non-human primate model of HIV- PAH and identify important correlates of disease progression.
Aim 3 will provide a primate model in years 3-10 for pre-clinical trials of candidate small molecule drugs arising from Projects 2 and 3, that require additional safety evaluations prior to phase l-lb human clinical trials

Public Health Relevance

The Pre-clinical Core will provide comprehensive expertise and novel assessments of PAH in pre-clinical models. Additionally, these studies will advance the field with the development and characterization of a novel, non-human primate model of PAH. This new model will complement the advanced physiological and molecular characterization of our existing rodent models and will provide a much needed intermediate step between drug development and clinical application

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-A (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
United States
Zip Code
Kanias, Tamir; Sinchar, Derek; Osei-Hwedieh, David et al. (2016) Testosterone-dependent sex differences in red blood cell hemolysis in storage, stress, and disease. Transfusion 56:2571-2583
Procter, Nathan Ek; Ball, Jocasta; Ngo, Doan Tm et al. (2016) Gender and tachycardia: independent modulation of platelet reactivity in patients with atrial fibrillation. J Geriatr Cardiol 13:202-8
Vanderpool, Rebecca R; Rischard, Franz; Naeije, Robert et al. (2016) Simple functional imaging of the right ventricle in pulmonary hypertension: Can right ventricular ejection fraction be improved? Int J Cardiol 223:93-94
Maron, Bradley A; Gladwin, Mark T; Simon, Marc A (2016) Update in Pulmonary Vascular Disease 2015. Am J Respir Crit Care Med 193:1337-44
Gladwin, Mark T (2016) Cardiovascular complications and risk of death in sickle-cell disease. Lancet 387:2565-74
Ambrozova, Gabriela; Martiskova, Hana; Koudelka, Adolf et al. (2016) Nitro-oleic acid modulates classical and regulatory activation of macrophages and their involvement in pro-fibrotic responses. Free Radic Biol Med 90:252-60
Al Ghouleh, Imad; Meijles, Daniel N; Mutchler, Stephanie et al. (2016) Binding of EBP50 to Nox organizing subunit p47phox is pivotal to cellular reactive species generation and altered vascular phenotype. Proc Natl Acad Sci U S A 113:E5308-17
Azarov, Ivan; Wang, Ling; Rose, Jason J et al. (2016) Five-coordinate H64Q neuroglobin as a ligand-trap antidote for carbon monoxide poisoning. Sci Transl Med 8:368ra173
Meijles, Daniel N; Pagano, Patrick J (2016) Nox and Inflammation in the Vascular Adventitia. Hypertension 67:14-9
Ambrozova, Gabriela; Fidlerova, Tana; Verescakova, Hana et al. (2016) Nitro-oleic acid inhibits vascular endothelial inflammatory responses and the endothelial-mesenchymal transition. Biochim Biophys Acta 1860:2428-37

Showing the most recent 10 out of 132 publications