Right ventricular failure is the leading cause of death in patients with severe pulmonary arterial hypertension. While It is known that right heart failure represents a major co-morbidity in advanced lung disease, little is known about right ventricular adaptation and failure within the context of secondary pulmonary hypertension. Interaction between the heart and pulmonary circulation plays an important role in pulmonary vascular stiffening and increased tone thus conferring additional hemodynamic stress on the RV. The initial response of both the pulmonary vasculature and the heart to hemodynamic and neurohormonal stress is hypertrophy. Numerous studies on the /e/i^ ventricle have concluded that hypertrophy often progresses to cardiac dysfunction and maladaptive remodeling culminating in heart failure. Similar events are proposed for the right heart. Currently, we lack an understanding of the fundamental relationship between hypertrophy and failure in the RV as well as the interaction between the heart and lung vasculature, particularly in the setting of secondary PAH. We postulate that common stress pathways in the heart and pulmonary circulation promote increased vascular resistance/remodeling and RV hypertrophy/failure. Consistent with this thesis, preliminary data suggest that increased reactive oxygen species (ROS) signaling and NO synthase uncoupling in both the RV and pulmonary vasculature represent a central pathological stress response in chronic hypoxia and cigarette smoke exposure. Secondary reduction in NO bioavailability in the RV, caused by eNOS dimer formation and increases in pathological eNOS derived ROS/superoxide anion (Oz')-generation is associated with the development of contractile dysfunction and maladaptive remodeling. Preliminary data implicate upstream NADPH oxidase activation in NOS uncoupling. Thus it is hypothesized that a convergent stress response involving ROS generation and eNOS uncoupling drives reduced NOcGMP signaling to produce maladaptive right ventricular and pulmonary vascular remodeling during hemodynamic and/or neurohormonal stress. The following aims will test this hypothesis: (1) determine the role of eNOS uncoupling as a common mechanism in the development of pulmonary vascular and right ventricular maladaptive remodeling;(2) investigate the 'kindling'role of NADPH oxidase (Nox)-derived ROS in eNOS dysfunction promoting feed-fonward ROS generation that leads to vascular and RV maladaptive remodeling;(3) develop and test small molecule inhibitors targeting pathological ROS signaling to prevent RV failure in murine and primate models of PAH.

Public Health Relevance

The proposed studies will add greatly to our basic understanding of cardiopulmonary disease. It is expected that the present proposal will result in new therapeutics to directly target the mechanistic pathways involved in the remodeling of the pulmonary vasculature and right ventricle in conditions of pulmonary hypertension.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL103455-03
Application #
8469900
Study Section
Special Emphasis Panel (ZHL1-CSR-A)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
3
Fiscal Year
2013
Total Cost
$423,805
Indirect Cost
$144,066
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Snyder, Nathaniel W; Golin-Bisello, Franca; Gao, Yang et al. (2015) 15-Oxoeicosatetraenoic acid is a 15-hydroxyprostaglandin dehydrogenase-derived electrophilic mediator of inflammatory signaling pathways. Chem Biol Interact 234:144-53
Simon, Marc A; Lacomis, Christopher D; George, M Patricia et al. (2014) Isolated right ventricular dysfunction in patients with human immunodeficiency virus. J Card Fail 20:414-21
Hill, Michael R; Simon, Marc A; Valdez-Jasso, Daniela et al. (2014) Structural and mechanical adaptations of right ventricle free wall myocardium to pressure overload. Ann Biomed Eng 42:2451-65
Lai, Yen-Chun; Potoka, Karin C; Champion, Hunter C et al. (2014) Pulmonary arterial hypertension: the clinical syndrome. Circ Res 115:115-30
Griffin, Paula J; Sebastiani, Paola; Edward, Heather et al. (2014) The genetics of hemoglobin A2 regulation in sickle cell anemia. Am J Hematol 89:1019-23
Frazziano, Giovanna; Al Ghouleh, Imad; Baust, Jeff et al. (2014) Nox-derived ROS are acutely activated in pressure overload pulmonary hypertension: indications for a seminal role for mitochondrial Nox4. Am J Physiol Heart Circ Physiol 306:H197-205
Klinke, Anna; Möller, Annika; Pekarova, Michaela et al. (2014) Protective effects of 10-nitro-oleic acid in a hypoxia-induced murine model of pulmonary hypertension. Am J Respir Cell Mol Biol 51:155-62
Sharifi-Sanjani, Maryam; Shoushtari, Ali Hakim; Quiroz, Marisol et al. (2014) Cardiac CD47 drives left ventricular heart failure through Ca2+-CaMKII-regulated induction of HDAC3. J Am Heart Assoc 3:e000670
Fazzari, Marco; Trostchansky, Andrés; Schopfer, Francisco J et al. (2014) Olives and olive oil are sources of electrophilic fatty acid nitroalkenes. PLoS One 9:e84884
Zemke, Anna C; Shiva, Sruti; Burns, Jane L et al. (2014) Nitrite modulates bacterial antibiotic susceptibility and biofilm formation in association with airway epithelial cells. Free Radic Biol Med 77:307-16

Showing the most recent 10 out of 47 publications