Project 3: Pulmonary Vascular-Targeted NO Therapeutic Strategies Pulmonary arterial hypertension (PAH) is a disease of the small pulmonary arteries, characterized by vasoconstriction, vascular proliferation and remodeling. The relaxation of pulmonary vascular smooth muscle cells and their abnormal proliferation is strongly modulated by nitric oxide (NO)-dependent reactions inducing both cGMP-dependent vasodilation and cGMP-independent reactions that inhibit smooth muscle proliferation and inflammatory cell function. Notably, PAH is linked with both decreased NO bioavailability and a lack of responsiveness to NO, a consequence of impaired NO biosynthesis, endothelial nitric oxide synthase (eNOS) uncoupling, dysregulated L-arginine metabolism and increased redox-dependent consumption of NO. We hypothesize that new vascular-targeted, NO-based therapeutic strategies will enhance the treatment of PAH. The research plan will evaluate the mechanisms of action of newly-appreciated signaling mediators in the context of limiting PAH. Specifically, we hypothesize that pulmonary vascular eNOS is negatively regulated by thrombospondin-l. Down-stream of eNOS, NO is then physiologically oxidized to form the potent NO signaling metabolites, nitrite and nitro-fatty acids, which dynamically regulate NO levels, p21 dependent vascular proliferation, phase 2 stress response enzymes, and peroxisome proliferator activating receptor-y signaling. The studies proposed in Project #3 will provide important new mechanistic insight and promising therapeutic strategies for modulating events central to the genesis of PAH. These goals capitalize on recent high impact discoveries related to the formation, metabolism and actions of NOderived species and synergize with central program objectives. Overall, the modulation of eNOS and NO by TSP-CD47 inhibition, nitro-fatty acid supplementation and the therapeutic application of nitrite will be evaluated in a continuum of objectives ranging from basic mechanistic studies to a highly developed translational clinical development program. This development will flow from rodent models of PAH and COPD/PAH, to clinical testing in a Pre-Clinical Core primate model of PAH and in human phase lla catheterization studies in patients with COPD and HIV associated PAH, evaluated in the Clinical Core.

Public Health Relevance

Pulmonary hypertension occurs in up to 50% of patients with advanced chronic obstructive lung disease and in 0.5-5% of patients with the acquired immunodeficiency syndrome and is associated with a dramatic increased risk of death. We propose to evaluate three novel treatment strategies targeting lung nitric oxide biology in a continuum of objectives ranging from basic mechanistic studies to a highly developed translational clinical drug development program, aimed at reversing pulmonary arterial hypertension.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL103455-04
Application #
8656396
Study Section
Special Emphasis Panel (ZHL1-CSR-A)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
4
Fiscal Year
2014
Total Cost
$446,099
Indirect Cost
$151,644
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Snyder, Nathaniel W; Golin-Bisello, Franca; Gao, Yang et al. (2015) 15-Oxoeicosatetraenoic acid is a 15-hydroxyprostaglandin dehydrogenase-derived electrophilic mediator of inflammatory signaling pathways. Chem Biol Interact 234:144-53
Simon, Marc A; Lacomis, Christopher D; George, M Patricia et al. (2014) Isolated right ventricular dysfunction in patients with human immunodeficiency virus. J Card Fail 20:414-21
Hill, Michael R; Simon, Marc A; Valdez-Jasso, Daniela et al. (2014) Structural and mechanical adaptations of right ventricle free wall myocardium to pressure overload. Ann Biomed Eng 42:2451-65
Lai, Yen-Chun; Potoka, Karin C; Champion, Hunter C et al. (2014) Pulmonary arterial hypertension: the clinical syndrome. Circ Res 115:115-30
Griffin, Paula J; Sebastiani, Paola; Edward, Heather et al. (2014) The genetics of hemoglobin A2 regulation in sickle cell anemia. Am J Hematol 89:1019-23
Frazziano, Giovanna; Al Ghouleh, Imad; Baust, Jeff et al. (2014) Nox-derived ROS are acutely activated in pressure overload pulmonary hypertension: indications for a seminal role for mitochondrial Nox4. Am J Physiol Heart Circ Physiol 306:H197-205
Klinke, Anna; Möller, Annika; Pekarova, Michaela et al. (2014) Protective effects of 10-nitro-oleic acid in a hypoxia-induced murine model of pulmonary hypertension. Am J Respir Cell Mol Biol 51:155-62
Sharifi-Sanjani, Maryam; Shoushtari, Ali Hakim; Quiroz, Marisol et al. (2014) Cardiac CD47 drives left ventricular heart failure through Ca2+-CaMKII-regulated induction of HDAC3. J Am Heart Assoc 3:e000670
Fazzari, Marco; Trostchansky, Andrés; Schopfer, Francisco J et al. (2014) Olives and olive oil are sources of electrophilic fatty acid nitroalkenes. PLoS One 9:e84884
Zemke, Anna C; Shiva, Sruti; Burns, Jane L et al. (2014) Nitrite modulates bacterial antibiotic susceptibility and biofilm formation in association with airway epithelial cells. Free Radic Biol Med 77:307-16

Showing the most recent 10 out of 47 publications