instnjctions): Recently, the modification of nuclear, mitochondrial, and cytoplasmic proteins by O-linked p-N- acetylglucosamine (0-GlcNAc) has emerged as a novel regulator of the stress response and cell survival. Numerous forms of cellular injury, including cardiac ischemic preconditioning (acute and prolonged), lead to elevated levels of 0-GlcNAc in both in vivo and in vitro models. Elevating 0-GlcNAcylation before, or immediately after, the induction of cellular injury is protective in models of ischemia reperfusion injury, as well as heat stress, oxidative stress, endoplasmic reticulum stress, hypoxia, and trauma hemorrhage. Together, these data suggest that 0-GlcNAc is a novel endogenous cardioprotective agent. However, the molecular mechanisms by which 0-GlcNAc regulates protein function leading to enhanced cell survival and cardioprotection have not been identified. The long term goal of this investigator, is to identify at a molecular level the mechanisms by which 0-GlcNAc promotes cell survival. The objective of this application is to: 1) Define the role(s) of 0-GlcNAc in mediating ischemic preconditioning. In order to characterize the mechanisms by which 0-GlcNAc leads to cardioprotection, proteins dynamically O-GlcNAc modified in response to ischemic-preconditioning will be identified and pathways that lead to enhanced 0-GlcNAcylation will be defined. 2) Elucidate the molecular mechanism(s) by which 0-GlcNAc regulates the process of autophagy leading to cardioprotection. To characterize the molecular mechanisms by which 0-GlcNAc protects cardiomyocytes via autophagy we will define: 1) the role of 0-GlcNAc in inducing autophagy during ischemic preconditioning;2) if enhanced autophagy is critical for 0- GlcNAc mediated cardioprotection;3) the identity of proteins involved directly in autophagy (or regulating autophagy) that are modified and regulated by 0-GlcNAc. Together, these studies will characterize a novel endogenous defense mechanism of the heart, highlighting new targets for the development of alternative strategies that enhance the hearts tolerance to ischemia reperfusion injury.

Public Health Relevance

The sugar 0-GlcNAc is a key component of the cellular stress response that enhances the ability of cells and tissues to survive ischemia reperfusion injury (for example, heart attack), but the mechanisms by which O- GlcNAc protects cells are unknown. Our goal is to understand how 0-GlcNAc promotes cell survival in a model of ischemia reperfusion injury at the molecular level, thus identifying new targets for the development of alternative strategies to enhance the heart's tolerance to ischemia reperfusion injury.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL107153-03
Application #
8477274
Study Section
Special Emphasis Panel (ZHL1-CSR-H)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
3
Fiscal Year
2013
Total Cost
$283,010
Indirect Cost
$110,443
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Yang, Shuang; Rubin, Abigail; Eshghi, Shadi Toghi et al. (2016) Chemoenzymatic method for glycomics: Isolation, identification, and quantitation. Proteomics 16:241-56
Lam, Maggie P Y; Venkatraman, Vidya; Xing, Yi et al. (2016) Data-Driven Approach To Determine Popular Proteins for Targeted Proteomics Translation of Six Organ Systems. J Proteome Res 15:4126-4134
Fahie, Kamau; Zachara, Natasha E (2016) Molecular Functions of Glycoconjugates in Autophagy. J Mol Biol 428:3305-24
Yang, Weiming; Jackson, Brooks; Zhang, Hui (2016) Identification of glycoproteins associated with HIV latently infected cells using quantitative glycoproteomics. Proteomics 16:1872-80
Hardivillé, Stéphan; Hart, Gerald W (2016) Nutrient regulation of gene expression by O-GlcNAcylation of chromatin. Curr Opin Chem Biol 33:88-94
Miller, William P; Mihailescu, Maria L; Yang, Chen et al. (2016) The Translational Repressor 4E-BP1 Contributes to Diabetes-Induced Visual Dysfunction. Invest Ophthalmol Vis Sci 57:1327-37
Zhu, Yanping; Liu, Ta-Wei; Madden, Zarina et al. (2016) Post-translational O-GlcNAcylation is essential for nuclear pore integrity and maintenance of the pore selectivity filter. J Mol Cell Biol 8:2-16
Hou, Ching-Wen; Mohanan, Vishnu; Zachara, Natasha E et al. (2016) Identification and biological consequences of the O-GlcNAc modification of the human innate immune receptor, Nod2. Glycobiology 26:13-8
Ma, Junfeng; Hart, Gerald W (2016) Mass Spectrometry-Based Quantitative O-GlcNAcomic Analysis. Methods Mol Biol 1410:91-103
Lagerlöf, Olof; Slocomb, Julia E; Hong, Ingie et al. (2016) The nutrient sensor OGT in PVN neurons regulates feeding. Science 351:1293-6

Showing the most recent 10 out of 110 publications