Nearly all of the diseases targeted by NHLBI directly involve glycoconjugates. However, there is both an acute lack of individuals with the knowledge and skills necessary to study glycoconjugates at the structure/function level. In fact, the complex extracellular and the simple, but dynamic, intracellular saccharides that are attached to proteins and lipids, do indeed play fundamental roles in many aspects of cardiovascular disease, lung biology and in the functions of all types of blood cells. We have assembled a unique team of experts in most aspects of glycosciences to not only carry-out the research goals of this PEG, but also to train the next generation of glycoscientists in the unique language and skills required to study glycoconjugates. Training the next generation of glycobiologists in the varied and complex methods and approaches that are required to study lycoconjugates is indeed critical to the next phase of biomedical research, which will be mostly focused on post-translational modifications. We have designed a thorough and comprehensive Glycosciences Skills Development Course, which in the first half will first teach our Fellows and students the basics of glycosciences in about twenty-eight 2h lectures (56 contact hours), discussions and reading (-10 weeks). The second half of the Skills Development Course will consist of nineteen hands-on laboratory exercises which will directly instruct our Fellows in the major methods of Glycosciences. These laboratory exercises will meet 3 times per week (M,W,F) for approximately 5h each (-95 contact hours). We strongly feel that only by such a comprehensive and hands-on approach can we begin to adequately prepare our Fellows to become leaders In glycoscience research. Part I of the Course starts with an overview of mammalian glycobiology, presents detailed information on each class of glycoconjugate, next discusses their biosynthesis, the enzymes controlling their structures, and ends with a discussion of carbohydrate binding proteins. Part II starts with an overview of glycan functions and then discusses their roles in human disease, culminating with a special lecture and round table discussion on their roles in cardiovascular disease. Part III starts with a lecture on the principles of carbohydrate structural determination and discusses the approaches for detailed analyses of various glycan types. Part IV is the hands-on laboratory course in which each Project or Core leader (with the help of their laboratory staff) will instruct the PEG Fellows in many of the methods used to analyze glycans. The Course will be offered every other year during the Program and will be limited to -10 students with PEG Fellows having priority. While a lot of work, this Core is the most efficient way to generate qualified glycobiologists!

Public Health Relevance

Glycoconjugates and their glycans are involved directly in nearly every major disease addressed by the mission of the NIH Heart, Lung and Blood Institute. Yet there is an acute and chronic shortage of individuals with the necessary training, skills and knowledge required to study complex glycoconjugates. This Core will take an intensive training approach to provide both the knowledge and hands-on skills required to study glycoconjugates at the molecular level.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-H)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
Zhu, Guangshuo; Groneberg, Dieter; Sikka, Gautam et al. (2015) Soluble guanylate cyclase is required for systemic vasodilation but not positive inotropy induced by nitroxyl in the mouse. Hypertension 65:385-92
Bullen, John W; Balsbaugh, Jeremy L; Chanda, Dipanjan et al. (2014) Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J Biol Chem 289:10592-606
Wang, Xiangchun; Chen, Jing; Li, Qing Kay et al. (2014) Overexpression of ? (1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology 24:935-44
Hardivillé, Stéphan; Hart, Gerald W (2014) Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab 20:208-13
Hascall, Vincent C; Wang, Aimin; Tammi, Markku et al. (2014) The dynamic metabolism of hyaluronan regulates the cytosolic concentration of UDP-GlcNAc. Matrix Biol 35:14-7
Aiyetan, Paul; Zhang, Bai; Chen, Lily et al. (2014) M2Lite: An Open-source, Light-weight, Pluggable and Fast Proteome Discoverer MSF to mzIdentML Tool. J Bioinform 1:40-49
Harlan, Robert; Zhang, Hui (2014) Targeted proteomics: a bridge between discovery and validation. Expert Rev Proteomics 11:657-61
Seo, Kinya; Rainer, Peter P; Lee, Dong-Ik et al. (2014) Hyperactive adverse mechanical stress responses in dystrophic heart are coupled to transient receptor potential canonical 6 and blocked by cGMP-protein kinase G modulation. Circ Res 114:823-32
Liu, Yansheng; Chen, Jing; Sethi, Atul et al. (2014) Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol Cell Proteomics 13:1753-68
Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming et al. (2014) Inhibition of protein carbamylation in urea solution using ammonium-containing buffers. Anal Biochem 446:76-81

Showing the most recent 10 out of 40 publications