Asthma is a major public health problem in the United States affecting over 23 million Americans and costing US society $56 billion annually. Despite advances in treatment of asthma, there remains significant unmet therapeutic need, and large subgroups of asthmatics have poor asthma control despite current asthma treatment. Consequently, asthma exacerbations, often precipitated by viral airway infections, continue to result in 2 million emergency room visits a year in the US. The largest molecular phenotype of asthma Is one that is driven by TH2 inflammation and characterized by eosinophilic inflammation, and the project proposed here focuses on clinical studies ofthe mechanisms of TH2 inflammation, including how TH2 inflammation can be amplified during viral-Induced asthma exacerbations. A key rationale for the research aims we propose here Is the increasing recognition that signals from the epithelium to innate cells contribute Importantly to mechanisms of airway Inflammation. The signals we propose to focus on are IL-33 and Its receptor (ST2) and the interactions of IL-33 with ST2-bearing innate helper type 2 cells (iH2) cells, a novel lineage-negative population of cells that secrete IL-5 and IL-13 In response to IL-33. iH2 cells represent a novel cellular source of TH2 cytokines and a cell type that this PPG hypothesizes to have a central role In mechanisms of airway TH2 Inflammation in asthma. Coincident with recent discoveries about iH2 cells has been publication of GWAS studies showing that genetic polymorphisms in IL-33 and ST2 are among a relatively short list of genes consistently associated with asthma. All of these new data suggest new ways by which airway epithelial cells can initiate and amplify type 2 Immune responses In the airway, and we will explore these new possibilities in three aims:
Aim 1 will determine the role of IH2 cells as cellular mediators of TH2 inflammation.
Aim 2 will determine how IL-33 regulates airway TH2 Inflammation during asthma exacerbations.
Aim 3 will determine how genetic variants in ST2 Influence airway TH2 inflammation. In tackling these alms we will advance knowledge for mechanisms of airway TH2 Inflammation in asthma.

Public Health Relevance

Asthma is a common disease and a major public health problem. It cannot be cured and many patients are not optimally controlled using current treatments. Our project will help advance understanding of basic mechanisms of airway Inflammation in patients with asthma and help Identify new approaches for treatment.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Bando, Jennifer K; Liang, Hong-Erh; Locksley, Richard M (2015) Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat Immunol 16:153-60
Simpson, Laura J; Patel, Sana; Bhakta, Nirav R et al. (2014) A microRNA upregulated in asthma airway T cells promotes TH2 cytokine production. Nat Immunol 15:1162-70
Thomas, Molly F; L'Etoile, Noelle D; Ansel, K Mark (2014) Eri1: a conserved enzyme at the crossroads of multiple RNA-processing pathways. Trends Genet 30:298-307
Peters, Michael C; Mekonnen, Zesemayat K; Yuan, Shaopeng et al. (2014) Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J Allergy Clin Immunol 133:388-94
Jackson, Daniel J; Hartert, Tina V; Martinez, Fernando D et al. (2014) Asthma: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases. Ann Am Thorac Soc 11 Suppl 3:S139-45
Baumjohann, Dirk; Ansel, K Mark (2014) MicroRNA regulation of the germinal center response. Curr Opin Immunol 28:6-11
von Moltke, Jakob; Locksley, Richard M (2014) I-L-C-2 it: type 2 immunity and group 2 innate lymphoid cells in homeostasis. Curr Opin Immunol 31:58-65
Locksley, Richard M; Fahy, John V (2014) Asthma and the flu: a tricky two-step. Immunol Cell Biol 92:389-91
Van Dyken, Steven J; Mohapatra, Alexander; Nussbaum, Jesse C et al. (2014) Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid type 2 and ?? T cells. Immunity 40:414-24
Bronevetsky, Yelena; Ansel, K Mark (2013) Regulation of miRNA biogenesis and turnover in the immune system. Immunol Rev 253:304-16

Showing the most recent 10 out of 16 publications