The human smooth muscle myosin heavy chain is the target of mutations that can cause familial thoracic aortic aneurysm dissection (TAAD). The underlying irnpact of the mutations is unknown, but it has been speculated that the mutations cause decreased force output in the smooth muscle cells. Intriguingly, mutations in similar regions of the human smooth muscle myosin have been associated with colorectal (CR) cancer, while other mutations are associated with intracranial aneurysms (ICA). In the case of the cancer- associated mutations, features shared with the TAAD-causing mutations that we have examined to date are a loss of regulation and altered kinetics that are consistent with decreased force output. We hypothesize that that a critical feature of the TAAD mutations that leads to disease is the loss of regulation. We hypothesize that the ICA-associated mutations will have a differential impact that will distinguish them from the TAAD- causing mutations. This likely will be altered contractile function without any loss of regulation. This will allow us to develop diagnostic evaluations of protein function that may prove of predictive value as to the consequences of mutations detected in patients prior to disease onset. This proposal makes use of our ability to express large amounts of human smooth muscle myosin in SF9 cells. We will characterize the impact of TAAD and ICA mutations on the kinetics, motility and regulation of human smooth muscle myosin, as well as examine filament forming properties and the impact on force generation at the ensemble and single molecule level for a subset of the mutations.

Public Health Relevance

A number of genes have been linked to thoracic aortic aneurysms leading to type A dissections (TAAD). This project seeks to study the effect of the mutations in myosin in sufficient detail to allow an understanding of the pathological processes that takes place, which in turn could lead to new insights and better treatments for the diseases.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL110869-03
Application #
8726463
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
City
Houston
State
TX
Country
United States
Zip Code
77225
Guo, Dong-Chuan; Duan, Xue-Yan; Regalado, Ellen S et al. (2017) Loss-of-Function Mutations in YY1AP1 Lead to Grange Syndrome and a Fibromuscular Dysplasia-Like Vascular Disease. Am J Hum Genet 100:21-30
Chen, Jiyuan; Peters, Andrew; Papke, Christina L et al. (2017) Loss of Smooth Muscle ?-Actin Leads to NF-?B-Dependent Increased Sensitivity to Angiotensin II in Smooth Muscle Cells and Aortic Enlargement. Circ Res 120:1903-1915
Ijaz, Talha; Sun, Hong; Pinchuk, Irina V et al. (2017) Deletion of NF-?B/RelA in Angiotensin II-Sensitive Mesenchymal Cells Blocks Aortic Vascular Inflammation and Abdominal Aortic Aneurysm Formation. Arterioscler Thromb Vasc Biol 37:1881-1890
Humphrey, Jay D; Milewicz, Dianna M (2017) Aging, Smooth Muscle Vitality, and Aortic Integrity. Circ Res 120:1849-1851
Banerjee, Chaity; Hu, Zhongjun; Huang, Zhong et al. (2017) The structure of the actin-smooth muscle myosin motor domain complex in the rigor state. J Struct Biol 200:325-333
Liu, Zhenan; Chang, Audrey N; Grinnell, Frederick et al. (2017) Vascular disease-causing mutation, smooth muscle ?-actin R258C, dominantly suppresses functions of ?-actin in human patient fibroblasts. Proc Natl Acad Sci U S A 114:E5569-E5578
Milewicz, Dianna M; Trybus, Kathleen M; Guo, Dong-Chuan et al. (2017) Altered Smooth Muscle Cell Force Generation as a Driver of Thoracic Aortic Aneurysms and Dissections. Arterioscler Thromb Vasc Biol 37:26-34
Lu, Hailong; Fagnant, Patricia M; Krementsova, Elena B et al. (2016) Severe Molecular Defects Exhibited by the R179H Mutation in Human Vascular Smooth Muscle ?-Actin. J Biol Chem 291:21729-21739
Milewicz, Dianna; Hostetler, Ellen; Wallace, Stephanie et al. (2016) Precision medical and surgical management for thoracic aortic aneurysms and acute aortic dissections based on the causative mutant gene. J Cardiovasc Surg (Torino) 57:172-7
Wallace, S; Guo, D-C; Regalado, E et al. (2016) Disrupted nitric oxide signaling due to GUCY1A3 mutations increases risk for moyamoya disease, achalasia and hypertension. Clin Genet 90:351-60

Showing the most recent 10 out of 44 publications