PROJECT 2: ENGINEERING HbA TO EVALUATE TOXICITY AND CLEARANCE DESCRIPTION: ABSTRACT: Toxicities due to acellular hemoglobin (Hb) have been observed for hemolytic disease, transfusions with old blood, and administration of extracellular hemoglobin-based oxygen carriers (HBOCs) and include: (a) interference with endothelial and smooth muscle signaling due to dioxygenation of NO;(b) self-destructive oxidization of the globin itself, nearby proteins, and lipids;(c) slow clearance and inflammation due to saturation of the haptoglobin receptor system and macrophage activation;(d) iron overload symptoms due to heme loss, globin denaturation, and iron accumulation;and (e), in the case of HBOCs, pathological auto-regulation of capillary flow and decreased tissue perfusion due to early O2 release in arteries and arterioles. Our overall goal is to test the relative importance of each of these toxicity mechanisms using genetically engineered recombinant HbA molecules in cell, organ, and animal model systems in direct collaboration with Dr. Abdu Alayash, who will act as a co-investigator and director of Core D, in the in vivo capillary systems designed to evaluate oxygen perfusion and nitric oxide scavenging in Project 1, and in the nitrite reduction and nanoparticle NO-releasing experiments described in Project 3.
The specific aims of Project 2 are to: (1) differentially modulate NO dioxygenation and O2 binding in order to determine the relative importance of NO scavenging versus auto-regulation of O2 delivery in causing hypertension and vasculature dysfunction;(2) determine the mechanisms that cause oxidative degradation of acellular HbA, protein radical generation, and oxidative damage of surrounding tissues, membranes, and plasma proteins;(3) evaluate the role of hemin loss and unfolding on the toxicity of acellular Hb in vivo;(4) examine the functional and physiological effects of haptoglobin binding to wild-type HbA and crosslinked rHb tetramers on inhibition of autooxidation, ferryl radical formation, hemin loss, and denaturation of the bound ?1?1 dimers and on HbA clearance from the blood stream.

Public Health Relevance

PUBLIC HEALTH: Identification of the mechanisms causing acellular Hb toxicity will allow the design of therapies to mitigate problems associated with hemolytic diseases, whole blood transfusions, and the use of HBOCs. For example, administration with ascorbate or nitrite/NO releasing agents could be used to counteract autooxidation or NO scavenging side effects, respectively. The protein engineering strategies obtained can also be used to optimize the safety and efficiency of recombinant Hb-based O2 carriers.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Albert Einstein College of Medicine
United States
Zip Code
Kettisen, Karin; Strader, Michael Brad; Wood, Francine et al. (2018) Site-directed mutagenesis of cysteine residues alters oxidative stability of fetal hemoglobin. Redox Biol 19:218-225
Alayash, Abdu I (2018) Oxidative pathways in the sickle cell and beyond. Blood Cells Mol Dis 70:78-86
Wallace, Martina; Green, Courtney R; Roberts, Lindsay S et al. (2018) Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nat Chem Biol 14:1021-1031
Sjodt, Megan; Macdonald, Ramsay; Marshall, Joanna D et al. (2018) Energetics underlying hemin extraction from human hemoglobin by Staphylococcus aureus. J Biol Chem 293:6942-6957
Jana, Sirsendu; Strader, Michael Brad; Meng, Fantao et al. (2018) Hemoglobin oxidation-dependent reactions promote interactions with band 3 and oxidative changes in sickle cell-derived microparticles. JCI Insight 3:
Kassa, Tigist; Strader, M B; Nakagawa, Akito et al. (2017) Targeting ?Cys93 in hemoglobin S with an antisickling agent possessing dual allosteric and antioxidant effects. Metallomics 9:1260-1270
Martucci, Alexandre Fabricio; Abreu Martucci, Ana Carolina Carvalho Ferreira; Cabrales, Pedro et al. (2017) Acute kidney function and morphology following topload administration of recombinant hemoglobin solution. Artif Cells Nanomed Biotechnol 45:24-30
Jana, Sirsendu; Meng, Fantao; Hirsch, Rhoda E et al. (2017) Oxidized Mutant Human Hemoglobins S and E Induce Oxidative Stress and Bioenergetic Dysfunction in Human Pulmonary Endothelial Cells. Front Physiol 8:1082
Cardenas, Andres S Benitez; Samuel, Premila P; Olson, John S (2017) 2017 Military Supplement: Current Challenges in the Development of Acellular Hemoglobin Oxygen Carriers by Protein Engineering. Shock :
Ao-Ieong, Eilleen S Y; Williams, Alexander; Jani, Vivek et al. (2017) Cardiac function during resuscitation from hemorrhagic shock with polymerized bovine hemoglobin-based oxygen therapeutic. Artif Cells Nanomed Biotechnol 45:686-693

Showing the most recent 10 out of 105 publications