Our laboratory has focused on understanding the mechanisms controlling acellular Hbs oxidative and nitrosative toxicities in vitro and in vivo. Evidence is accumulating which suggests that reduction-oxidation """"""""redox"""""""" reactions of free Hb and hemoglobin-based oxygen carriers (HBOCs), also known as """"""""blood substitutes"""""""" do occur in vivo with some potentially serious clinical consequences. A primary focus of the research is based on the role of oxidants-mediated changes in acellular Hb under conditions that can mimic ischemia/reperfusion injury. Depending on whether host endogenous reductive mechanisms are employed or not, we will investigate Hb oxidative reactions in vivo using rats (ascorbate producing) or guinea pigs (ascorbate non-producing). The role of haptoglobin (Hp) and/or other antioxidant materials in supplementing endogenous antioxidant mechanisms will be investigated. For the investigation of effects of oxygen carrying HBOCs on cardiac performance under hypoxia, we will perfuse isolated hearts from rats with a number of Hbs and/or antioxidant materials. Previous experiences from our laboratory make us uniquely positioned to critically evaluate Hb oxidative processes with regard to heme iron, amino acids and protein structure both in vitro and in vivo and the implementation of any successful therapeutic strategies designed collectively within this program.
Our specific aims for Core D are to: 1) Determine oxidative and nitrosative characteristics of acellular Hbs in the presence or absence of specific nanomaterials in vitro. Studies will include autoxidation rate determination, H2O2 induced heme iron oxidation, protein oxidative changes, heme degradation and nitric oxide (NO)-driven oxidation reactions as outlined in both project 2 and 3. 2) Determine redox transition of acellular Hbs in cell culture media and/or in isolated organ under normoxia and hypoxia as well as their ability to carry oxygen and whether any given candidate(s) will proceed to the next level of in vivo evaluation in an appropriate animal model. 3) Perform a 50-80% exchange transfusion of blood from guinea pigs or rats with individual acellular Hbs. HIF-1 a protein, and down stream genes such as erythropoietin (Epo), endothelial nitric oxide synthase (eNos), heme oxygenase (Ho-1) and vascular endothelial growth factor (Vegf) will be evaluated by conventional molecular biology techniques. This together with in vivo work carried out in the microcirculation in project 1, will allow us to determine what particular chemistry of a given Hb/or additive offers advantage over others in terms of oxygen carrying and redox stability of'the carrier molecule.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL110900-03
Application #
8707847
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
3
Fiscal Year
2014
Total Cost
$242,841
Indirect Cost
$49,418
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Kettisen, Karin; Strader, Michael Brad; Wood, Francine et al. (2018) Site-directed mutagenesis of cysteine residues alters oxidative stability of fetal hemoglobin. Redox Biol 19:218-225
Alayash, Abdu I (2018) Oxidative pathways in the sickle cell and beyond. Blood Cells Mol Dis 70:78-86
Wallace, Martina; Green, Courtney R; Roberts, Lindsay S et al. (2018) Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nat Chem Biol 14:1021-1031
Sjodt, Megan; Macdonald, Ramsay; Marshall, Joanna D et al. (2018) Energetics underlying hemin extraction from human hemoglobin by Staphylococcus aureus. J Biol Chem 293:6942-6957
Jana, Sirsendu; Strader, Michael Brad; Meng, Fantao et al. (2018) Hemoglobin oxidation-dependent reactions promote interactions with band 3 and oxidative changes in sickle cell-derived microparticles. JCI Insight 3:
Bissé, Emmanuel; Schaeffer-Reiss, Christine; Van Dorsselaer, Alain et al. (2017) Hemoglobin Kirklareli (? H58L), a New Variant Associated with Iron Deficiency and Increased CO Binding. J Biol Chem 292:2542-2555
Jani, Vivek P; Jelvani, Alborz; Moges, Selamawit et al. (2017) Polyethylene Glycol Camouflaged Earthworm Hemoglobin. PLoS One 12:e0170041
Alayash, Abdu I (2017) Hemoglobin-Based Blood Substitutes and the Treatment of Sickle Cell Disease: More Harm than Help? Biomolecules 7:
Meng, Fantao; Alayash, Abdu I (2017) Determination of extinction coefficients of human hemoglobin in various redox states. Anal Biochem 521:11-19
Hirsch, Rhoda Elison; Sibmooh, Nathawut; Fucharoen, Suthat et al. (2017) HbE/?-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics. Antioxid Redox Signal 26:794-813

Showing the most recent 10 out of 105 publications