The current PPG is focused on three different preclinical animal models pertinent to developing gene therapy treatment strategies for hemophilia. These animal models are critical towards developing translational strategies for hemophilia gene therapy. The Animal Core will serve as an integral component of the UNC PPG. Activities to support PPG members will include colony breeding, maintenance and genotyping as well as vector construction, administration and characterization in the context of with the ultimate goal of developing clinically relevant gene therapy modalities. Each ofthe mouse strains required by Projects 1 through 4 will be bred and maintained by the Animal Core to facilitate rapid and efficient dissemination to individual projects. Project 3 is focused on evaluating l.A. prevention of hemarthropathy in dogs. All canine model studies will be carried out at the Frances Owen Blood Research Lab and Canine model facility at UNC. Project 4 is focused on developing a non-human primate model of hemophilia B that can be utilized for the study of factor IX deficiency as well as allow for the preclinicaltesting of therapeutic approaches for the treatment of patients with factor IX deficiency. All primate model studies will be carried out at the primate facility at UC Davis.

Public Health Relevance

The current PPG is focused on three different preclinical animal models pertinent to developing gene therapy treatment strategies for hemophilia. These animal models are critical towards developing translational strategies for hemophilia gene therapy. The Animal Core will serve as an integral component of the UNC PPG.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL112761-02
Application #
8616789
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
City
Chapel Hill
State
NC
Country
United States
Zip Code
Albright, Blake H; Storey, Claire M; Murlidharan, Giridhar et al. (2017) Mapping the Structural Determinants Required for AAVrh.10 Transport across the Blood-Brain Barrier. Mol Ther :
Borchardt, Erin K; Meganck, Rita M; Vincent, Heather A et al. (2017) Inducing circular RNA formation using the CRISPR endoribonuclease Csy4. RNA 23:619-627
Berry, Garrett E; Tse, Longping V (2017) Virus Binding and Internalization Assay for Adeno-associated Virus. Bio Protoc 7:
Liang, Katharine J; Woodard, Kenton T; Weaver, Mark A et al. (2017) AAV-Nrf2 Promotes Protection and Recovery in Animal Models of Oxidative Stress. Mol Ther 25:765-779
Tse, Longping Victor; Klinc, Kelli A; Madigan, Victoria J et al. (2017) Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc Natl Acad Sci U S A 114:E4812-E4821
Wang, M; Sun, J; Crosby, A et al. (2017) Direct interaction of human serum proteins with AAV virions to enhance AAV transduction: immediate impact on clinical applications. Gene Ther 24:49-59
Xiao, Ping-Jie; Mitchell, Angela M; Huang, Lu et al. (2016) Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction. Hum Gene Ther 27:309-24
Nelson, Christopher E; Hakim, Chady H; Ousterout, David G et al. (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403-7
Murlidharan, Giridhar; Crowther, Andrew; Reardon, Rebecca A et al. (2016) Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain. JCI Insight 1:e88034
Murlidharan, Giridhar; Sakamoto, Kensuke; Rao, Lavanya et al. (2016) CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector. Mol Ther Nucleic Acids 5:e338

Showing the most recent 10 out of 40 publications