The acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury (All) affects 100- 200K people in the U.S. yearly leading to death in nearly 35% of patients. ARDS is characterized by neutrophilic inflammation, vascular leak, and alveolar filling with proteinaceous fluid. This Program Project Proposal (P01) focuses on elucidating the role of cardiolipin (CL) as a novel damage associated molecular pattern (DAMP-CL) and mediator of tissue damage in acute lung injury. The alveolar epithelium and innate immune system are central to the development of ARDS. The three primary projects detailed within the P01 focus on expounding cardiolipin biology in these key cell types; type II alveolar pneumocytes in Projects 1 and 2 and inflammatory cells including the recently characterized myeloid derived suppressor cell in Project 3. Core C (Animal Models and Human Sample Repository) is designed to optimize the translational exploration of the mechanisms identified in vitro in Projects 1-3 whereby cardiolipin leads to progressive cellular and subsequently tissue damage in All. The Core will serve to standardize the characterization of murine models of acute lung injury across the various projects using bacterial pathogens or hyperoxic insult as indicated. Core personnel will perform physiologic measurements for project investigators including Flexivent lung mechanics and permeability assessments along with tissue and fluid collection for dissemination to project investigators. In addition, a key component of the Core services will be to provide de-identified human tissue and fluid samples (collected via an ongoing IRB approved registry and biospecimen repository and existing Divisional tissue banks) to project investigators for verification of human relevance of novel findings from the bench or from murine models. In providing these services, Core C integrates tightly and interacts closely with all projects comprising the P01 proposal.

Public Health Relevance

ARDS is a devasting disorder and despite several decades of research, few novel pathways have emerged underlying this illness. This Core will greatly facilitate examination of newer pathways studying a rare toxin, cardiolipin, and its production and elaboration from cells that profoundly alters lung stability. This Core will provide invaluable resources for animal studies of lung injury and provide human samples for toxin analysis.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Caler, Elisabet V
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
United States
Zip Code
Han, SeungHye; Jerome, Jacob A; Gregory, Alyssa D et al. (2017) Cigarette smoke destabilizes NLRP3 protein by promoting its ubiquitination. Respir Res 18:2
Stockwell, Brent R; Friedmann Angeli, José Pedro; Bayir, Hülya et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 171:273-285
Kooijman, E E; Swim, L A; Graber, Z T et al. (2017) Magic angle spinning 31P NMR spectroscopy reveals two essentially identical ionization states for the cardiolipin phosphates in phospholipid liposomes. Biochim Biophys Acta 1859:61-68
Doll, Sebastian; Proneth, Bettina; Tyurina, Yulia Y et al. (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13:91-98
Shah, Faraaz Ali; Singamsetty, Srikanth; Guo, Lanping et al. (2017) Stimulation of the endogenous incretin glucose-dependent insulinotropic peptide by enteral dextrose improves glucose homeostasis and inflammation in murine endotoxemia. Transl Res :
Gauthier, Marc; Chakraborty, Krishnendu; Oriss, Timothy B et al. (2017) Severe asthma in humans and mouse model suggests a CXCL10 signature underlies corticosteroid-resistant Th1 bias. JCI Insight 2:
Oriss, Timothy B; Raundhal, Mahesh; Morse, Christina et al. (2017) IRF5 distinguishes severe asthma in humans and drives Th1 phenotype and airway hyperreactivity in mice. JCI Insight 2:
Das, Sudipta; Raundhal, Mahesh; Chen, Jie et al. (2017) Respiratory syncytial virus infection of newborn CX3CR1-deficent mice induces a pathogenic pulmonary innate immune response. JCI Insight 2:
Kitsios, Georgios D; Morowitz, Michael J; Dickson, Robert P et al. (2017) Dysbiosis in the intensive care unit: Microbiome science coming to the bedside. J Crit Care 38:84-91
Kagan, Valerian E; Bay?r, Hülya; Tyurina, Yulia Y et al. (2017) Elimination of the unnecessary: Intra- and extracellular signaling by anionic phospholipids. Biochem Biophys Res Commun 482:482-490

Showing the most recent 10 out of 85 publications