Acute lung injury and chronic lung disease are together the third leading cause of death in the United States. This is due to the lack of effective therapis and a poor understanding of the mechanisms driving the pathology of these disorders. The major objective of this PPG is to advance novel therapies for the treatment of acute and chronic lung disease. Adenosine is produced following tissue injury, particularly injury involving ischemia and hypoxia. The production of extracellular adenosine and its subsequent signaling through adenosine receptors plays an important role in orchestrating injury responses in multiple organs including th lung. This process of regulated adenosine production and signaling following injury is known as the """"""""hypoxic adenosine response"""""""". Our research efforts have established that this response plays an important role in orchestrating injury responses in the lung, but through mechanisms that are not well understood. Activation of this pathway can attenuate acute lung injury, while blockade of this pathway is beneficial on aspects of chronic lung disease. We need to better understand how the hypoxic adenosine response is regulated in different types of lung injury in order to know when and how to target the activation or inactivation of this pathway. This will be done by examining direct injury processes in the lung as well as common secondary pulmonary injuries such as those seen associated with sickle cell disease and acute kidney injury. This will allow us to understand important aspects of systemic and organ responses critical to eventual human therapies. We will capitalize on our recent data showing that the regulation of the equilibrative nucleoside transportrs (ENTs) is a novel mechanism for regulating extracellular adenosine following injury. We will conduc mechanistic analysis in novel mouse models, including cell-specific knockouts of ENTs and other components of the hypoxic adenosine response. Importantly, we will also conduct rigorous assessment of the hypoxic adenosine response in disease relevant tissues from patients with acute and chronic lung disease as well as patients with sickle cell disease and kidney injury that can develop pulmonary complications. This approach will help advance emerging adenosine-based therapies forward for the treatment of lung disease. Three Component Projects, Two Scientific Cores and an Administrative Core are planned to facilitate the research goals and interactions of this PPG.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Eu, Jerry Pc
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Health Science Center Houston
Schools of Medicine
United States
Zip Code
Neudecker, Viola; Brodsky, Kelley S; Kreth, Simone et al. (2016) Emerging Roles for MicroRNAs in Perioperative Medicine. Anesthesiology 124:489-506
Garcia-Morales, Luis J; Chen, Ning-Yuan; Weng, Tingting et al. (2016) Altered Hypoxic-Adenosine Axis and Metabolism in Group III Pulmonary Hypertension. Am J Respir Cell Mol Biol 54:574-83
Hoegl, Sandra; Zwissler, Bernhard; Eltzschig, Holger K et al. (2016) Acute respiratory distress syndrome following cardiovascular surgery: current concepts and novel therapeutic approaches. Curr Opin Anaesthesiol 29:94-100
Baudiß, Kristin; de Paula Vieira, Rodolfo; Cicko, Sanja et al. (2016) C1P Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Preventing NF-κB Activation in Neutrophils. J Immunol 196:2319-26
Goodman, Steven R; Pace, Betty S; Hansen, Kirk C et al. (2016) Minireview: Multiomic candidate biomarkers for clinical manifestations of sickle cell severity: Early steps to precision medicine. Exp Biol Med (Maywood) 241:772-81
Wu, Hongyu; Bogdanov, Mikhail; Zhang, Yujin et al. (2016) Hypoxia-mediated impaired erythrocyte Lands' Cycle is pathogenic for sickle cell disease. Sci Rep 6:29637
Dehn, Shirley; DeBerge, Matthew; Yeap, Xin-Yi et al. (2016) HIF-2α in Resting Macrophages Tempers Mitochondrial Reactive Oxygen Species To Selectively Repress MARCO-Dependent Phagocytosis. J Immunol 197:3639-3649
Ju, Cynthia; Colgan, Sean P; Eltzschig, Holger K (2016) Hypoxia-inducible factors as molecular targets for liver diseases. J Mol Med (Berl) 94:613-27
Luo, Fayong; Le, Ngoc-Bao; Mills, Tingting et al. (2016) Extracellular adenosine levels are associated with the progression and exacerbation of pulmonary fibrosis. FASEB J 30:874-83
Kiers, Harmke D; Scheffer, Gert-Jan; van der Hoeven, Johannes G et al. (2016) Immunologic Consequences of Hypoxia during Critical Illness. Anesthesiology 125:237-49

Showing the most recent 10 out of 43 publications