Idiopathic pulmonary fibrosis (IPF) is one ofthe most pernicious forms of lung fibrogenesis and currently has no clearly effective treatments. Whereas the etiology of IPF remains enigmatic, there is a plenty of evidence showing dysregulated fibrogenesis, differentiation, contractility and migration of pulmonary fibroblasts from IPF lungs. However, the role of miRNAs in regulation of such aberrant activities in IPF fibroblasts (IPF-Fbs)is unknown. In our preliminary studies, we found that the expression of miR-31 is downregulated in the lungs of mice with bleomycin induced lung fibrosis. Target predictions demonstrate that miR-31 regulates the expression of integrin alphas and RhoA. These proteins are critical regulators of fibrogenesis, differentiation, contractility and migration of pulmonary myofibroblasts. This information, together with our preliminary data, suggests that miR-31 may play an important role in initiation and progression of IPF. Therefore, miR-31 appears to be a potential target for developing novel therapeutics to treat IPF. Our preliminary data showing that introduction of miR-31 mimics diminishes the severity of bleomycin induced lung fibrosis lend a strong support to this hypothesis. In this proposal, we aim to;determine the transcriptional and epigenetic mechanisms by which miR-31 is downregulated in IPF-Fbs;determine if miR-31 targets RhoA and integrin alphas, and thereby regulating the contractile, migratory, and fibrogenic activities of IPF-Fbs;determine if reconstitution of pulmonary miR-31 through intra-tracheal or intra-pleural delivery demonstrates therapeutic potentials in treating lung fibrosis in mouse models;determine if miR-31 inhibits PMC-myofibroblast differentiation/activation, if miR-31 expression is regulated by Src kinase signaling pathways, and if the antifibrogenic activity of miR-31 is mediated by N0X4 in IPF-Fbs.

Public Health Relevance

The studies proposed in this application should not only improve the understanding ofthe role of miR-31 in the pathogenesis of IPF, but also provide solid foundation for moving miR-31 therapeutics to clinical trials in treating this devastating disease.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Alabama Birmingham
United States
Zip Code
Pennathur, Subramaniam; Vivekanandan-Giri, Anuradha; Locy, Morgan L et al. (2016) Oxidative Modifications of Protein Tyrosyl Residues Are Increased in Plasma of Human Subjects with Interstitial Lung Disease. Am J Respir Crit Care Med 193:861-8
Liu, Rui-Ming; Eldridge, Stephanie; Watanabe, Nobuo et al. (2016) Therapeutic potential of an orally effective small molecule inhibitor of plasminogen activator inhibitor for asthma. Am J Physiol Lung Cell Mol Physiol 310:L328-36
Larson-Casey, Jennifer L; Deshane, Jessy S; Ryan, Alan J et al. (2016) Macrophage Akt1 Kinase-Mediated Mitophagy Modulates Apoptosis Resistance and Pulmonary Fibrosis. Immunity 44:582-96
Kurundkar, Ashish; Thannickal, Victor J (2016) Redox mechanisms in age-related lung fibrosis. Redox Biol 9:67-76
Kulkarni, Tejaswini; Willoughby, John; Acosta Lara, Maria Del Pilar et al. (2016) A bundled care approach to patients with idiopathic pulmonary fibrosis improves transplant-free survival. Respir Med 115:33-8
Rangarajan, Sunad; Kurundkar, Ashish; Kurundkar, Deepali et al. (2016) Novel Mechanisms for the Antifibrotic Action of Nintedanib. Am J Respir Cell Mol Biol 54:51-9
Rangarajan, Sunad; Locy, Morgan L; Luckhardt, Tracy R et al. (2016) Targeted Therapy for Idiopathic Pulmonary Fibrosis: Where To Now? Drugs 76:291-300
Kulkarni, Tejaswini; de Andrade, Joao; Zhou, Yong et al. (2016) Alveolar epithelial disintegrity in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 311:L185-91
Cui, Huachun; Banerjee, Sami; Xie, Na et al. (2016) MicroRNA-27a-3p Is a Negative Regulator of Lung Fibrosis by Targeting Myofibroblast Differentiation. Am J Respir Cell Mol Biol 54:843-52
Swamy, Shobha M; Rajasekaran, Namakkal S; Thannickal, Victor J (2016) Nuclear Factor-Erythroid-2-Related Factor 2 in Aging and Lung Fibrosis. Am J Pathol 186:1712-23

Showing the most recent 10 out of 51 publications