The Core B (Animal Model Core) for the MCW P01 program project grant, entitled ?Renal Mechanisms in Blood Pressure Control?, will support program project investigators with comprehensive management of several novel genetically engineered rat models. The need for Core B is apparent considering current heavy use of rat models and the numbers of animals proposed. Throughout the history of the PPG, Core B has provided a centralized approach to managing rat models to achieve the proposed studies. The overall goal of Core B is to assist program project investigators with the development, management, genotyping, distribution, and molecular characterization of the models. Multiple approaches will be available to develop new models as needed by the Project investigators. Core B will serve as an invaluable resource for the project investigators to define the novel mechanisms that lead to the control of blood pressure and kidney diseases. Core staff will also assist in experimental design and training of the laboratory staff, and participate in data collection, analysis, and preparation for publication.

Public Health Relevance

Animal Model Core B is an essential component of this grant and will support all three projects of this PPG. The three scientific projects share the common goal of providing novel insights into the mechanisms and functional pathways underlying the development of salt-sensitive hypertension and renal damage. The overall goal of Core B is to manage, genotype distribute, and assist in the molecular characterization of several genetically modified rat strains necessary to conduct the proposed studies.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
OH, Youngsuk
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical College of Wisconsin
United States
Zip Code
Kumar, Vikash; Wollner, Clayton; Kurth, Theresa et al. (2017) Inhibition of Mammalian Target of Rapamycin Complex 1 Attenuates Salt-Induced Hypertension and Kidney Injury in Dahl Salt-Sensitive Rats. Hypertension 70:813-821
Mattson, David L; Liang, Mingyu (2017) Hypertension: From GWAS to functional genomics-based precision medicine. Nat Rev Nephrol 13:195-196
Abais-Battad, Justine M; Dasinger, John Henry; Fehrenbach, Daniel J et al. (2017) Novel adaptive and innate immunity targets in hypertension. Pharmacol Res 120:109-115
Evans, Louise C; Petrova, Galina; Kurth, Theresa et al. (2017) Increased Perfusion Pressure Drives Renal T-Cell Infiltration in the Dahl Salt-Sensitive Rat. Hypertension 70:543-551
Hashmat, Shireen; Rudemiller, Nathan; Lund, Hayley et al. (2016) Interleukin-6 inhibition attenuates hypertension and associated renal damage in Dahl salt-sensitive rats. Am J Physiol Renal Physiol 311:F555-61
Cowley Jr, Allen W; Yang, Chun; Zheleznova, Nadezhda N et al. (2016) Evidence of the Importance of Nox4 in Production of Hypertension in Dahl Salt-Sensitive Rats. Hypertension 67:440-50
Dayton, Alex; Exner, Eric C; Bukowy, John D et al. (2016) Breaking the Cycle: Estrous Variation Does Not Require Increased Sample Size in the Study of Female Rats. Hypertension 68:1139-1144
Huang, Baorui; Cheng, Yuan; Usa, Kristie et al. (2016) Renal Tumor Necrosis Factor ? Contributes to Hypertension in Dahl Salt-Sensitive Rats. Sci Rep 6:21960
Miller, Bradley; Palygin, Oleg; Rufanova, Victoriya A et al. (2016) p66Shc regulates renal vascular tone in hypertension-induced nephropathy. J Clin Invest 126:2533-46
Zheleznova, Nadezhda N; Yang, Chun; Cowley Jr, Allen W (2016) Role of Nox4 and p67phox subunit of Nox2 in ROS production in response to increased tubular flow in the mTAL of Dahl salt-sensitive rats. Am J Physiol Renal Physiol 311:F450-8

Showing the most recent 10 out of 29 publications