In nearly all tissues, there is a continual turnover of cells, usually by the process of apoptosis. In healthy tissues, the dying cells are quickly recognized and cleared by phagocytes. However, failure to promptly clear apoptotic cells leads to their secondary necrosis, release of toxic cytoplasmic contents, and inflammation within tissues. The basis for this project stems from the initial observations by the Ravichandran laboratory that apoptotic cells via soluble factors termed find-me signals attract phagocytes. Our work identified the nucleotides ATP and UTP as one type of find-me signal and critical for clearance of apoptotic cells in vivo (Elliott et al., Nature 2009). Subsequently, in collaboration with two other Project leaders on this P01 (Doug Bayliss and Brant Isakson), we showed that pannexin channels are opened up during early apoptosis, leading to release of nucleotides, setting up a find-me signal gradient to attract phagocytes (Chekeni et al., Nature 2010). PANX1 gene in humans has been linked to heart disease, atherosclerosis, as well as airway inflammation and airway disease. This proposal will directly test the hypothesis that pannexin channels contribute to efficient apoptotic cell clearance, helping limit tissue inflammation, and pathologies associated with atherosclerosis and airway inflammation.
In Aim 1, we will test whether pannexin channel-mediated nucleotide release by dying macrophages (e.g. in atherosclerotic lesions) influences monocyte recruitment to the vascular lesions, and whether this affects atherosclerosis progression, and plaque stability. We will also test specific candidate small molecules that we have identified as potential inhibitors/modifiers of Panx1 channels.
In Aim 2, via global and cell type specific conditional Panx1 knockout mice, we will address the role of Panx1 in airway inflammation, based on our recent observations (Juncadella et al., Nature, 2012). Collectively, these studies should yield new knowledge on communication between dying cells and phagocytes, with direct implications for atherosclerosis and airway inflammation. These studies can also provide a rationale for considering Panx1 channels as a suitable target for therapeutic development and possibly identify new small molecules for such targeting.

Public Health Relevance

Prompt clearance of dying corpses in tissues is essential for preventing induction of inflammation. A key step in apoptotic cell removal is the release of nucleotide find-me signals via the pannexin channels, attracting phagocytes to facilitate clearance. This proposal addresses how the pannexin channels and the cell clearance process influence the onset and progression of atherosclerosis and lung inflammation. The proposed studies will also help identify selective and beneficial pharmacological targeting of pannexins in specific diseases.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL120840-01A1
Application #
8787173
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-05-31
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Olmez, Inan; Brenneman, Breanna; Xiao, Aizhen et al. (2017) Combined CDK4/6 and mTOR Inhibition Is Synergistic against Glioblastoma via Multiple Mechanisms. Clin Cancer Res 23:6958-6968
Good, Miranda E; Chiu, Yu-Hsin; Poon, Ivan K et al. (2017) Pannexin 1 Channels as an Unexpected New Target of the Anti-Hypertensive Drug Spironolactone. Circ Res :
Adamson, Samantha E; Montgomery, Garren; Seaman, Scott A et al. (2017) Myeloid P2Y2 receptor promotes acute inflammation but is dispensable for chronic high-fat diet-induced metabolic dysfunction. Purinergic Signal :
Mercadante, Emily R; Lorenz, Ulrike M (2017) T Cells Deficient in the Tyrosine Phosphatase SHP-1 Resist Suppression by Regulatory T Cells. J Immunol 199:129-137
Penberthy, Kristen K; Rival, Claudia; Shankman, Laura S et al. (2017) Context-dependent compensation among phosphatidylserine-recognition receptors. Sci Rep 7:14623
Begandt, Daniela; Good, Miranda E; Keller, Alex S et al. (2017) Pannexin channel and connexin hemichannel expression in vascular function and inflammation. BMC Cell Biol 18:2
Chiu, Yu-Hsin; Jin, Xueyao; Medina, Christopher B et al. (2017) A quantized mechanism for activation of pannexin channels. Nat Commun 8:14324
Weaver, Janelle L; Arandjelovic, Sanja; Brown, Gregory et al. (2017) Hematopoietic pannexin 1 function is critical for neuropathic pain. Sci Rep 7:42550
Elliott, Michael R; Ravichandran, Kodi S (2016) The Dynamics of Apoptotic Cell Clearance. Dev Cell 38:147-60
Keller 4th, T C Stevenson; Butcher, Joshua T; Broseghini-Filho, Gilson BrĂ¡s et al. (2016) Modulating Vascular Hemodynamics With an Alpha Globin Mimetic Peptide (Hb?X). Hypertension 68:1494-1503

Showing the most recent 10 out of 23 publications