This is a revised application for renewal of a long-standing Program Project. The focus of the Program Project has been on the role of the peripheral and central nervous system in pain mechanisms. Animal models of human pain states are used so that experimental manipulations can be employed to provide evidence for pathophysiological mechanisms of pain or potential improvements in therapy, hence translational capability would be heightened. An emerging concept in mechanisms underlying persistent pain is that elevated intracellular levels of reactive oxygen species (ROS) play a critical role in peripheral and central sensitization. The overall hypothesis of this PPG is that ROS themselves act as signaling molecules imposed upon the cell signaling pathways involved in sensitization processes. Three projects are proposed, each project is designed to reveal specific aspects of ROS involvement in central sensitization and persistent pain. Project 1 examines the role of ROS in central neuropathic pain. This project hypothesizes that chronic central neuropathic pain associated with spinal cord injury is composed of two components: central and peripheral sensitization. The role of ROS in both of these components will be examined using in vivo and in vitro preparations in rats. Project 2 is concerned with the critical role of ROS in central sensitization in the spinal cord using a capsaicin induced hyperalgesia model in mice (including mutant mice). This project examines ROS metabolism in the spinal cord with the emphasis on the role of superoxide dismutase and the steps in which ROS sensitize dorsal horn neurons. Project 3 investigates the role of ROS in the sensitization of neurons in both the spinal cord and the central nervous system (amygdala) in visceral pain plasticity using a colitis pain model in rats. These projects will be interlinked by three cores: Administrative, ROS Analytical, and Imaging Cores. Thus, sum of all projects interlinked by by the supporting cores will provide data showing the benefits of limiting or eliminating the increases in ROS as a novel therapy for persistent pathologic pain.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Babcock, Debra J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Medical Br Galveston
Schools of Medicine
United States
Zip Code
Medina, Georgina; Ji, Guangchen; Gr├ęgoire, St├ęphanie et al. (2014) Nasal application of neuropeptide S inhibits arthritis pain-related behaviors through an action in the amygdala. Mol Pain 10:32
Hassler, Shayne N; Johnson, Kathia M; Hulsebosch, Claire E (2014) Reactive oxygen species and lipid peroxidation inhibitors reduce mechanical sensitivity in a chronic neuropathic pain model of spinal cord injury in rats. J Neurochem 131:413-7
Ji, Guangchen; Neugebauer, Volker (2014) CB1 augments mGluR5 function in medial prefrontal cortical neurons to inhibit amygdala hyperactivity in an arthritis pain model. Eur J Neurosci 39:455-66
Gwak, Young S; Hassler, Shayne E; Hulsebosch, Claire E (2013) Reactive oxygen species contribute to neuropathic pain and locomotor dysfunction via activation of CamKII in remote segments following spinal cord contusion injury in rats. Pain 154:1699-708
Gregoire, Stephanie; Neugebauer, Volker (2013) 5-HT2CR blockade in the amygdala conveys analgesic efficacy to SSRIs in a rat model of arthritis pain. Mol Pain 9:41
Kiritoshi, Takaki; Sun, Hao; Ren, Wenjie et al. (2013) Modulation of pyramidal cell output in the medial prefrontal cortex by mGluR5 interacting with CB1. Neuropharmacology 66:170-8
Ren, Wenjie; Kiritoshi, Takaki; Gregoire, Stephanie et al. (2013) Neuropeptide S: a novel regulator of pain-related amygdala plasticity and behaviors. J Neurophysiol 110:1765-81
Ji, Guangchen; Fu, Yu; Adwanikar, Hita et al. (2013) Non-pain-related CRF1 activation in the amygdala facilitates synaptic transmission and pain responses. Mol Pain 9:2
Yowtak, June; Wang, Jigong; Kim, Hee Young et al. (2013) Effect of antioxidant treatment on spinal GABA neurons in a neuropathic pain model in the mouse. Pain 154:2469-76
Crown, Eric D; Gwak, Young S; Ye, Zaiming et al. (2012) Calcium/calmodulin dependent kinase II contributes to persistent central neuropathic pain following spinal cord injury. Pain 153:710-21

Showing the most recent 10 out of 575 publications