The ability to link elementary actions together to perform a meaningful sequence of movements is a key component of voluntary motor behavior. Many of our daily motor tasks (e.g., handwriting, typing, etc.) depend on attaining a high level of skill in the performance of sequential movements. Consequently, the neural basis of skill acquisition and retention is a fundamental problem of systems neuroscience. To explore the cortical involvement in this behavior we will use optical imaging and single neuron recording to define patterns of activity in the primary motor cortex (Ml) and the dorsal premotor area (PMd) as monkeys learn to perform and practice sequences of movements. We will monitor activity at various times in relation to an animal's level of skill acquisition and task performance. The data from optical imaging and single neuron recording are likely to provide fundamental insights into the neural basis of motor skills. However, both techniques are correlational approaches. To test causality, we will make micro-injections of various pharmacolgic agents in M1 and the PMd to disrupt local neuron activity, protein synthesis and ERK signaling. We will determine the effects of these micro-injections on the acquisition, performance and retention of motor skills. Taken together, the proposed studies will provide some novel information on the cortical mechanisms that underlie a critical aspect of human behavior- the acquisition and retention of motor skills. In addition, there is growing evidence that many of the mechanisms of plasticity that are used to acquire new skills may also be available to promote recovery of function following traumatic brain injury or stroke. Thus, the new insights gained from the proposed experiments may suggest novel rehabilitation strategies for restoring motor function.

Public Health Relevance

The proposed work is central to the problem of understanding the mechansims where practice leads to to reorganization of the human motor system in the face of aging, neurodeneration, stroke or brain injury. Understanding these mechansims has an impact on the design of therapies directed at preserving function, developing compensator movements and ultimately, developing novel motor capacity.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Santa Barbara
Santa Barbara
United States
Zip Code
Soto, Fabian A; Vucovich, Lauren; Musgrave, Robert et al. (2015) General recognition theory with individual differences: a new method for examining perceptual and decisional interactions with an application to face perception. Psychon Bull Rev 22:88-111
Lawlor, Patrick Nathan; Kalisky, Tomer; Rosner, Robert et al. (2014) Conceptualizing cancer drugs as classifiers. PLoS One 9:e106444
Ashby, F Gregory (2014) Is state-trace analysis an appropriate tool for assessing the number of cognitive systems? Psychon Bull Rev 21:935-46
Devarajan, Karthik; Cheung, Vincent C K (2014) On nonnegative matrix factorization algorithms for signal-dependent noise with application to electromyography data. Neural Comput 26:1128-68
Smith, J David; Johnston, Jennifer J R; Musgrave, Robert D et al. (2014) Cross-modal information integration in category learning. Atten Percept Psychophys 76:1473-84
Acuna, Daniel E; Wymbs, Nicholas F; Reynolds, Chelsea A et al. (2014) Multifaceted aspects of chunking enable robust algorithms. J Neurophysiol 112:1849-56
Fernandes, Hugo L; Stevenson, Ian H; Vilares, Iris et al. (2014) The generalization of prior uncertainty during reaching. J Neurosci 34:11470-84
Klimm, Florian; Bassett, Danielle S; Carlson, Jean M et al. (2014) Resolving structural variability in network models and the brain. PLoS Comput Biol 10:e1003491
Smith, J David; Boomer, Joseph; Zakrzewski, Alexandria C et al. (2014) Deferred feedback sharply dissociates implicit and explicit category learning. Psychol Sci 25:447-57
Barany, Deborah A; Della-Maggiore, Valeria; Viswanathan, Shivakumar et al. (2014) Feature interactions enable decoding of sensorimotor transformations for goal-directed movement. J Neurosci 34:6860-73

Showing the most recent 10 out of 72 publications