All three projects proposed in the program project grant application will utilize the mouse behavioral core facilities including motor and cognitive testing. Motor testing is most often done as a counterpart to histopathology to assess brain damage after stroke, as well as effects of molecular pathway manipulation and putative therapeutic strategies. More recently it has become appreciated that stroke also induces cognitive deficits as well, yet cognitive testing is only occasionally used as a measure of functional outcome after experimental stroke. In contrast, cognitive output is a mainstay of assessment in traumatic brain injury (TBI) models. Most cognitive testing reported involves use of memory acquisition tests such as the Morris water maze, T-maze, novel object recognition, and others. Because each of the individual projects relies on behavioral testing as important experimental outputs, the sensitivity, validity, and reliability of behavioral testing is a central issue in the PPG overall. This is especially true when comparing and interpreting behavioral data across diverse injury models such as stroke and TBI. The goal of the behavioral core is to provide a central facility to each PI that will (1) assist in experimental design and selection of appropriate testing methodology to answer specific questions in individual brain injury models, (2) ensure a uniform non- varying testing environment to provide stable environmental and test conditions longitudinally across experiments, and (3) provide hands on assistance and technical training in motor and cognitive testing for technicians, postdoctoral fellows, graduate students, faculty and others interested in expanding the behavioral testing repertoire of their labs. The behavioral core will be equipped to perform motor (corner test, cylinder test, grid walk, and tape removal) and cognitive (Morris water maze. Y-maze, novel object recognition, and radial arm maze) testing using video camera recorders and Any Maze software. In addition to its availability for all of the Pis, the behaviroal core facility will be open for use by other NIH-funded investigators at MGH as time and space allow.

Public Health Relevance

The purpose of the PPG is to utilize and assess long term regenerative strategies to promote recovery after stroke and traumatic brain injury. Functional (motor and cognitive) outcome measures require robust testing methods that are consistent over time to ensure their reliability and validity. The Behavioral Core will provide equipment and standardized protocols to ensure validity of data across experiments.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS055104-07
Application #
8837703
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2015-05-01
Budget End
2016-04-30
Support Year
7
Fiscal Year
2015
Total Cost
$140,086
Indirect Cost
$57,121
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02114
Kura, Sreekanth; Xie, Hongyu; Fu, Buyin et al. (2018) Intrinsic optical signal imaging of the blood volume changes is sufficient for mapping the resting state functional connectivity in the rodent cortex. J Neural Eng 15:035003
Sadeghian, Homa; Lacoste, Baptiste; Qin, Tao et al. (2018) Spreading depolarizations trigger caveolin-1-dependent endothelial transcytosis. Ann Neurol 84:409-423
Chung, David Y; Sadeghian, Homa; Qin, Tao et al. (2018) Determinants of Optogenetic Cortical Spreading Depolarizations. Cereb Cortex :
Takase, Hajime; Liang, Anna C; Miyamoto, Nobukazu et al. (2018) Protective effects of a radical scavenger edaravone on oligodendrocyte precursor cells against oxidative stress. Neurosci Lett 668:120-125
Maki, Takakuni; Choi, Yoon Kyung; Miyamoto, Nobukazu et al. (2018) A-Kinase Anchor Protein 12 Is Required for Oligodendrocyte Differentiation in Adult White Matter. Stem Cells 36:751-760
Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang et al. (2018) Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography. J Biophotonics 11:
Chung, David Y; Sugimoto, Kazutaka; Fischer, Paul et al. (2018) Real-time non-invasive in vivo visible light detection of cortical spreading depolarizations in mice. J Neurosci Methods 309:143-146
Gómez, Carlos A; Sutin, Jason; Wu, Weicheng et al. (2018) Phasor analysis of NADH FLIM identifies pharmacological disruptions to mitochondrial metabolic processes in the rodent cerebral cortex. PLoS One 13:e0194578
Maki, Takakuni; Morancho, Anna; Martinez-San Segundo, Pablo et al. (2018) Endothelial Progenitor Cell Secretome and Oligovascular Repair in a Mouse Model of Prolonged Cerebral Hypoperfusion. Stroke 49:1003-1010
Wang, Hui; Magnain, Caroline; Wang, Ruopeng et al. (2018) as-PSOCT: Volumetric microscopic imaging of human brain architecture and connectivity. Neuroimage 165:56-68

Showing the most recent 10 out of 240 publications