Scientific Core (Core Leaders, Clark and Ebner) will provide neuropathological, neuroanatomical and invivo optical imaging expertise required for each project and for the overall Program. Dr. Clark is uniquelyqualified for this role, given his many years of experience investigating neurodegenerative disorders usingboth human autopsy specimens and murine models of human disease. Specifically, the core will investigatethe overall brain architecture, specific areas of degeneration, and specific cellular changes in autopsyspecimens from DM subjects studied or contacted through Project 3, from the CCUG- and Mbnlloverexpressionmurine models of Project 1, and from the Mtm/lAE3/AE3 and Mbnll-'- mice of Project 2, usingroutine histological, immunohistological, and RNA or DNA fluorescent in-situ histological methods. Dr.Clark's extensive experience with both human and murine neurodegeneration, and his knowledge of humanand murine neuroanatomy, will help in correlating the imaging and pathological findings, and in focusinginvestigations in all three Projects. Dr. Tim Ebner, an innovative neuroscienctist and cerebellar physiologisthas developed a state of the art, system for optically measuring cerebellar circuits, in vivo. The preliminarydata presented in this application are significant not only for their potential to inform us on the pathology ofDM but also because Dr. Ebner's imaging methods for the first time allow studies of LTP in vivo. The specificspecific focus of the core will be: Focus 1 The Core will provide neuropathological characterization ofpatients who have died with myotonic dystrophy types 1 and 2 (DM1 and DM2); Focus 2 ~ The Core willprovide neuropathological characterization of central nervous system pathological changes in transgenicanimals used to model different aspects of myotonic dystrophies; Focus 3 The Core will procure andpreserve tissue for biochemical studies from CNS and other organs of DM1 and DM2 subjects undergoingautopsy examinations; Focus 4 The Core will provide the central facilities and expertise for functional invivo optical imaging of the cerebellar cortex for the murine models of myotonic dystrophy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
1P01NS058901-01A1
Application #
7499404
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2008-04-15
Budget End
2009-03-31
Support Year
1
Fiscal Year
2008
Total Cost
$206,170
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Pattamatta, Amrutha; Cleary, John D; Ranum, Laura P W (2018) All in the Family: Repeats and ALS/FTD. Trends Neurosci 41:247-250
Sznajder, ?ukasz J; Thomas, James D; Carrell, Ellie M et al. (2018) Intron retention induced by microsatellite expansions as a disease biomarker. Proc Natl Acad Sci U S A 115:4234-4239
Chen, Gang; Carter, Russell E; Cleary, John D et al. (2018) Altered levels of the splicing factor muscleblind modifies cerebral cortical function in mouse models of myotonic dystrophy. Neurobiol Dis 112:35-48
Cleary, John Douglas; Pattamatta, Amrutha; Ranum, Laura P W (2018) Repeat-associated non-ATG (RAN) translation. J Biol Chem 293:16127-16141
Grima, Jonathan C; Daigle, J Gavin; Arbez, Nicolas et al. (2017) Mutant Huntingtin Disrupts the Nuclear Pore Complex. Neuron 94:93-107.e6
Nakamori, Masayuki; Hamanaka, Kohei; Thomas, James D et al. (2017) Aberrant Myokine Signaling in Congenital Myotonic Dystrophy. Cell Rep 21:1240-1252
Zu, Tao; Cleary, John D; Liu, Yuanjing et al. (2017) RAN Translation Regulated by Muscleblind Proteins in Myotonic Dystrophy Type 2. Neuron 95:1292-1305.e5
Thomas, James D; Sznajder, ?ukasz J; Bardhi, Olgert et al. (2017) Disrupted prenatal RNA processing and myogenesis in congenital myotonic dystrophy. Genes Dev 31:1122-1133
Cleary, John Douglas; Ranum, Laura Pw (2017) New developments in RAN translation: insights from multiple diseases. Curr Opin Genet Dev 44:125-134
Moloney, Christina; Rayaprolu, Sruti; Howard, John et al. (2016) Transgenic mice overexpressing the ALS-linked protein Matrin 3 develop a profound muscle phenotype. Acta Neuropathol Commun 4:122

Showing the most recent 10 out of 57 publications