The overall goal of this program project is to investigate mechanisms by which alterations in mitochondrial protein function(s) contribute to neuronal degeneration related to Parkinson's disease (PD). Thus, a central Neuropathology Core to examine alterations in subcellular protein distribution, post-translational modification, and association with neuronal injury/death markers in PD/Lewy body disease (LBD) patient brain tissues and related model systems forms an essential component interfacing with each of the individual projects. The Core will be directed by a practicing neuropathologist with expertise in Lewy body diseases and subcellular protein trafficking in PD models, and draw upon extensive resources of the University of Pittsburgh Brain Bank. The neuropathology core will apply multi-label fluorescence or biochemical techniques to study protein localization, phosphorylation and macromolecular interactions in appropriately fixed or frozen tissues, in defining selection criteria to obtain pertinent regions of brain from diseased and matched control subjects, and in standardizing quantitative image analysis protocols for experimental material and human brain tissue studies across the projects. The core personnel have ongoing, productive collaborations with the individual project leaders, as reflected in shared manuscripts and preliminary data. Given the success of these interactions, we expect a continued expansion of translational efforts between disease models and human pathology.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS059806-05
Application #
8505556
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
5
Fiscal Year
2013
Total Cost
$87,263
Indirect Cost
$29,663
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Verma, Manish; Callio, Jason; Otero, P Anthony et al. (2017) Mitochondrial Calcium Dysregulation Contributes to Dendrite Degeneration Mediated by PD/LBD-Associated LRRK2 Mutants. J Neurosci 37:11151-11165
Tapias, Victor; Hu, Xiaoping; Luk, Kelvin C et al. (2017) Synthetic alpha-synuclein fibrils cause mitochondrial impairment and selective dopamine neurodegeneration in part via iNOS-mediated nitric oxide production. Cell Mol Life Sci 74:2851-2874
Di Maio, Roberto; Barrett, Paul J; Hoffman, Eric K et al. (2016) ?-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson's disease. Sci Transl Med 8:342ra78
Van Laar, Victor S; Berman, Sarah B; Hastings, Teresa G (2016) Mic60/mitofilin overexpression alters mitochondrial dynamics and attenuates vulnerability of dopaminergic cells to dopamine and rotenone. Neurobiol Dis 91:247-61
Hu, Xiaoming; Leak, Rehana K; Shi, Yejie et al. (2015) Microglial and macrophage polarization—new prospects for brain repair. Nat Rev Neurol 11:56-64
Greenamyre, J Timothy; Sanders, Laurie H; Gasser, Thomas (2015) Fruit flies, bile acids, and Parkinson disease: a mitochondrial connection? Neurology 85:838-9
Zharikov, Alevtina D; Cannon, Jason R; Tapias, Victor et al. (2015) shRNA targeting ?-synuclein prevents neurodegeneration in a Parkinson's disease model. J Clin Invest 125:2721-35
Lee, Jang-Won; Tapias, Victor; Di Maio, Roberto et al. (2015) Behavioral, neurochemical, and pathologic alterations in bacterial artificial chromosome transgenic G2019S leucine-rich repeated kinase 2 rats. Neurobiol Aging 36:505-18
Tapias, Victor; Greenamyre, J Timothy (2014) A rapid and sensitive automated image-based approach for in vitro and in vivo characterization of cell morphology and quantification of cell number and neurite architecture. Curr Protoc Cytom 68:12.33.1-22
An, Chengrui; Shi, Yejie; Li, Peiying et al. (2014) Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol 115:6-24

Showing the most recent 10 out of 46 publications