This Core provides an essential function for the overall scientific execution of the performance of the individual projects. A main purpose of the Animal Core is to maintain and insure the genetic integrity of the large number of unique genetically altered mouse lines available for the use of each member of the Program Project. Mice from each line will be maintained and genotyped by the Core and provided to the individual investigators for expansion as dictated by the experimental design. The duties of this core include responsibility for the breeding program, weaning pups and genotyping. Responsibility for adjusting the census of each mouse line in anticipation ofthe needs ofthe Pi's such that expansion ofthe individual lines can be accomplished to facilitate timely experiments. The core is also responsible for the generation of new transgenic lines required for the successful demonstration of the mechanisms underiying the hypotheses tested in each project. Lastly, the core is responsible for insuring the sterile maintenance of the bone marrow chimeric mice and the extent of chimerism prior to use by the individual projects.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cleveland Clinic Lerner
United States
Zip Code
Butchi, Niranjan B; Hinton, David R; Stohlman, Stephen A et al. (2014) Ifit2 deficiency results in uncontrolled neurotropic coronavirus replication and enhanced encephalitis via impaired alpha/beta interferon induction in macrophages. J Virol 88:1051-64
de Aquino, Maria Teresa P; Kapil, Parul; Hinton, David R et al. (2014) IL-27 limits central nervous system viral clearance by promoting IL-10 and enhances demyelination. J Immunol 193:285-94
Kapil, Parul; Stohlman, Stephen A; Hinton, David R et al. (2014) PKR mediated regulation of inflammation and IL-10 during viral encephalomyelitis. J Neuroimmunol 270:1-12
Phares, Timothy W; DiSano, Krista D; Hinton, David R et al. (2013) IL-21 optimizes T cell and humoral responses in the central nervous system during viral encephalitis. J Neuroimmunol 263:43-54
Phares, Timothy W; Stohlman, Stephen A; Hinton, David R et al. (2013) Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J Virol 87:3382-92
Phares, Timothy W; Stohlman, Stephen A; Hwang, Mihyun et al. (2012) CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis. J Virol 86:2416-27
Puntambekar, Shweta S; Bergmann, Cornelia C; Savarin, Carine et al. (2011) Shifting hierarchies of interleukin-10-producing T cell populations in the central nervous system during acute and persistent viral encephalomyelitis. J Virol 85:6702-13
Savarin, Carine; Stohlman, Stephen A; Rietsch, Anna M et al. (2011) MMP9 deficiency does not decrease blood-brain barrier disruption, but increases astrocyte MMP3 expression during viral encephalomyelitis. Glia 59:1770-81
Phares, Timothy W; Stohlman, Stephen A; Hinton, David R et al. (2010) Enhanced antiviral T cell function in the absence of B7-H1 is insufficient to prevent persistence but exacerbates axonal bystander damage during viral encephalomyelitis. J Immunol 185:5607-18