CORE A FSHD BIORESOURCES CORE No pathogenic gene(s) have been identified in FSHD and the molecular and cellular pathophysiology remains unclear. Moreover, the complex genetic and epigenetic changes have precluded the development of a representative animal model. Consequently, access to large numbers of well-characterized, patient-derived biological samples remains vital in advancing FSHD research. The overall aim of the proposed FSHD Bioresources Core is to generate wellcharacterized biological resources, collected in a standardized way and that will assist the Program Project's four proposed scientific studies achieve their proposed aims. To this end we will generate sets of biological resources from a) FSHDl subjects, b) FSHD2 (phenotypic) subjects and c) normal control subjects. Each set will include a flash-frozen muscle sample, a myoblast cell line and a skin-derived fibroblast cell line. Each subject will be comprehensively genotyped for the FSHD region and clinically characterized for overall disease severity, strength of the muscle group from which the sample is derived as well as pathologic grading of an adjacent muscle biopsy sample.

Public Health Relevance

This core will enhance the capability of a nascent FSHD biorepository in Rochester and will allow the collection of enough biological resources to serve not only the needs of the proposed Program Project but the needs of the wider FSHD research community as well.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS069539-05
Application #
8634149
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
City
Seattle
State
WA
Country
United States
Zip Code
98109
van den Boogaard, Marlinde L; Lemmers, Richard J F L; Camaño, Pilar et al. (2016) Double SMCHD1 variants in FSHD2: the synergistic effect of two SMCHD1 variants on D4Z4 hypomethylation and disease penetrance in FSHD2. Eur J Hum Genet 24:78-85
Jagannathan, Sujatha; Shadle, Sean C; Resnick, Rebecca et al. (2016) Model systems of DUX4 expression recapitulate the transcriptional profile of FSHD cells. Hum Mol Genet :
van den Boogaard, Marlinde L; Lemmers, Richard J L F; Balog, Judit et al. (2016) Mutations in DNMT3B Modify Epigenetic Repression of the D4Z4 Repeat and the Penetrance of Facioscapulohumeral Dystrophy. Am J Hum Genet 98:1020-9
Tawil, Rabi; Padberg, George W; Shaw, Dennis W et al. (2016) Clinical trial preparedness in facioscapulohumeral muscular dystrophy: Clinical, tissue, and imaging outcome measures 29-30 May 2015, Rochester, New York. Neuromuscul Disord 26:181-6
Knopp, Paul; Krom, Yvonne D; Banerji, Christopher R S et al. (2016) DUX4 induces a transcriptome more characteristic of a less-differentiated cell state and inhibits myogenesis. J Cell Sci 129:3816-3831
Daxinger, Lucia; Tapscott, Stephen J; van der Maarel, Silvère M (2015) Genetic and epigenetic contributors to FSHD. Curr Opin Genet Dev 33:56-61
Statland, Jeffrey M; Donlin-Smith, Colleen M; Tapscott, Stephen J et al. (2015) Milder phenotype in facioscapulohumeral dystrophy with 7-10 residual D4Z4 repeats. Neurology 85:2147-50
Lim, Jong-Won; Snider, Lauren; Yao, Zizhen et al. (2015) DICER/AGO-dependent epigenetic silencing of D4Z4 repeats enhanced by exogenous siRNA suggests mechanisms and therapies for FSHD. Hum Mol Genet 24:4817-28
Statland, Jeffrey M; Shah, Bharati; Henderson, Don et al. (2015) Muscle pathology grade for facioscapulohumeral muscular dystrophy biopsies. Muscle Nerve 52:521-6
Statland, Jeffrey M; Odrzywolski, Karen J; Shah, Bharati et al. (2015) Immunohistochemical Characterization of Facioscapulohumeral Muscular Dystrophy Muscle Biopsies. J Neuromuscul Dis 2:291-299

Showing the most recent 10 out of 36 publications