Amyloid-p (AP) peptide accumulation and aggregation are initiating events in the pathogenesis of Alzheimer's disease (AD). AB aggregation is concentration-dependent and can result from its overproduction, inefficient clearance, or both. LRP1 is a multifunctional lipoprotein receptor that modulates both AB production and clearance. While the fast endocytosis of LRP1 modulates the endocytosis and processing of amyloid precursor protein (APP) to influence AB production, the endocytic functions of both LRP1 and cell surface heparan sulfate proteoglycan (HSPG) facilitate cellular uptake and clearance of Ap. A major goal of this project is to examine the in vivo roles of LRP1 and HSPG in brain AP production and clearance in mice with altered gene expression by viral mediated or genetic approaches. Our recent collaborative work with the groups of David Holtzman and John Cirrito has also showed that synaptic activity regulates APP processing to AB, and that this regulation requires the endocytosis of APP. In addition to presynaptic mechanisms, AP producfion can also be regulated by a postsynaptic mechanism that involves NMDARs, which interact with LRP1. Therefore, we plan to determine whether LRP1/HSPGmediated Ap production or clearance is regulated by synaptic activity. Our overall hypothesis is that LRP1 and HSPG play critical roles in synaptic-dependent regulation of both AB production and clearance, and that dysregulation of these pathways leads to AP accumulation and aggregation in AD brains. To test our hypothesis, we will collaborate with Drs. David Holtzman and John Cirrito, who have extensive experience in modulating synaptic activity and measuring AB metabolism in vivo, to pursue three specific aims.
In Aim 1, we will dissect the role of LRP1 in synaptic-dependent AB generation in vivo.
In Aim 2, we will dissect the role of LRP1 and HSPG in synaptic-dependent AB clearance in vivo.
In Aim 3, we will examine the specific roles of LRPI and HSPG in neurons and astrocytes in AB metabolism and amyloid pathology in vivo using conditional knockout mice. Together, these studies should allow us to dissect the molecular mechanisms underlying synaptic regulation of brain AP metabolism and may define novel targets for AD therapy.

Public Health Relevance

AD is the leading cause of dementia in elderly. Mounting evidence indicates that AB accumulation and aggregation in the brain are central and early events in AD pathogenesis. The major goal of our project is to dissect molecular pathways that mediate AB production and clearance, and examine how these AP metabolic events are regulated by brain synaptic activity. Our studies should define AB metabolic pathways at the molecular and synaptic levels and should identify novel diagnostic and therapeutic targets.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Saint Louis
United States
Zip Code
Wojtas, Aleksandra M; Kang, Silvia S; Olley, Benjamin M et al. (2017) Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways. Proc Natl Acad Sci U S A 114:E6962-E6971
Zheng, Honghua; Jia, Lin; Liu, Chia-Chen et al. (2017) TREM2 Promotes Microglial Survival by Activating Wnt/?-Catenin Pathway. J Neurosci 37:1772-1784
Kang, S S; Ren, Y; Liu, C-C et al. (2017) Lipocalin-2 protects the brain during inflammatory conditions. Mol Psychiatry :
Liu, Chia-Chen; Hu, Jin; Zhao, Na et al. (2017) Astrocytic LRP1 Mediates Brain A? Clearance and Impacts Amyloid Deposition. J Neurosci 37:4023-4031
Czirr, Eva; Castello, Nicholas A; Mosher, Kira I et al. (2017) Microglial complement receptor 3 regulates brain A? levels through secreted proteolytic activity. J Exp Med 214:1081-1092
Holth, Jerrah; Patel, Tirth; Holtzman, David M (2017) Sleep in Alzheimer's Disease - Beyond Amyloid. Neurobiol Sleep Circadian Rhythms 2:4-14
Ju, Yo-El S; Ooms, Sharon J; Sutphen, Courtney et al. (2017) Slow wave sleep disruption increases cerebrospinal fluid amyloid-? levels. Brain 140:2104-2111
Zhong, Li; Chen, Xiao-Fen; Wang, Tingting et al. (2017) Soluble TREM2 induces inflammatory responses and enhances microglial survival. J Exp Med 214:597-607
Zhong, Li; Zhang, Zhen-Lian; Li, Xinxiu et al. (2017) TREM2/DAP12 Complex Regulates Inflammatory Responses in Microglia via the JNK Signaling Pathway. Front Aging Neurosci 9:204
Liu, Chia-Chen; Zhao, Na; Fu, Yuan et al. (2017) ApoE4 Accelerates Early Seeding of Amyloid Pathology. Neuron 96:1024-1032.e3

Showing the most recent 10 out of 70 publications