Previously, our SPORE investigators (5 projects) successfully translated their basic findings into 3 Phase 1 interventional clinical trials, a 42-patient glioma tissue analysis defining loss of a key growth regulatory mechanism and a 332 patient case-control genetic epidemiology survey defining significant associations of two HLA phenotypes with either indolent or rapid glioma progression. The themes of this, new competitive renewal SPORE application include: Anti-apoptosis Inhibition, Oncolytic Virus therapy, Antibody-mediated Therapy, Apoptosis, and Autophagy. Four translational research projects are proposed, each of which will initiate one or more interventional clinical trials within a 3- 5 year time frame. These include: 1)Targeted'Intervention of the JAK2/STAT3 Signaling Axis for Anaplastic Glioma Therapy o develop a rational basis for inhibiting the JAK2/STAT3 pathway using small molecule inhibitor drugs to improve conventional therapeutic outcomes;2) Optimized Chimeric HSV for Anaplastic Glioma Therapy will develop a clinical application for a cGMP RAID-produced chimeric herpes simplex virus is safe while significantly enhanced in its replicative properties and overall ability to infect and kill glioma cells;3) Enhancing Death Receptor Antibody Therapy for Anaplastic Gliomas will evaluate two new pro-apoptotic drugs, AT-101 and AT-406, together with a UAB developed, humanized anti-DR5 monoclonal antibody administered either intravenously or by convection enhanced delivery to induce apoptosis in tumor-associated endothelium and. glioma cells;and 4) Lysosomotropic Therapy of Anaplastic Gliomas will characterize blood-brain barrier-permeable analogues of chloroquine and fluoroquinolone that induce glioma cell autophagy. These projects will be supported by 5 Cores: 1) Administrative, 2) Brain Tumor Tissue, 3) Clinical Trials, 4) Biostatistics/Bioinformatics, and 5) Brain Tumor Animal Models. Our Career Development Program has recruited 2 new investigators to brain tumor translational research and will support up to 4 more. We will continue the: very successful Developmental Research Program that supported 15 investigators, .9 of whom were new to brain tumor research. All four of the proposed projects in this application were originally Developmental Projects. The University, School of Medicine and Comprehensive Cancer Center strongly support this SPORE application We will continue our multiple, active collaborations with other Brain Tumor SPOREs and will foster new interactions with other non-brain organ site cancer SPORE programs locally and nationally.

Public Health Relevance

Patients diagnosed with anaplastic gliomas face a dismal prognosis as overall survival has remained essentially unchanged despite more than 50 years of extensive basic and clinical science research. The principal goal of the UAB Brain Tumor SPORE is to have a positive impact on this unacceptable situation by translating the laboratory-based discoveries of four multi-disciplinary groups of scientists into novel, yet practical, Phase I clinical interventions that address the unmet need for more effective treatments.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-I (M1))
Program Officer
Arnold, Julia T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Alabama Birmingham
Schools of Medicine
United States
Zip Code
Friedman, Gregory K; Moore, Blake P; Nan, Li et al. (2016) Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses. Neuro Oncol 18:227-35
Jackson, Joshua D; Markert, James M; Li, Li et al. (2016) STAT1 and NF-κB Inhibitors Diminish Basal Interferon-Stimulated Gene Expression and Improve the Productive Infection of Oncolytic HSV in MPNST Cells. Mol Cancer Res 14:482-92
Ring, Eric K; Markert, James M; Gillespie, G Yancey et al. (2016) Checkpoint Proteins in Pediatric Brain and Extracranial Solid Tumors: Opportunities for Immunotherapy. Clin Cancer Res :
Warram, Jason M; de Boer, Esther; Korb, Melissa et al. (2015) Fluorescence-guided resection of experimental malignant glioma using cetuximab-IRDye 800CW. Br J Neurosurg 29:850-8
Rajbhandari, Rajani; McFarland, Braden C; Patel, Ashish et al. (2015) Loss of tumor suppressive microRNA-31 enhances TRADD/NF-κB signaling in glioblastoma. Oncotarget 6:17805-16
Friedman, Gregory K; Beierle, Elizabeth A; Gillespie, George Yancey et al. (2015) Pediatric cancer gone viral. Part II: potential clinical application of oncolytic herpes simplex virus-1 in children. Mol Ther Oncolytics 2:
Anderson, Joshua C; Taylor, Robert B; Fiveash, John B et al. (2015) KINOMIC ALTERATIONS IN ATYPICAL MENINGIOMA. Med Res Arch 2015:
Dobbins, G Clement; Ugai, Hideyo; Curiel, David T et al. (2015) A Multi Targeting Conditionally Replicating Adenovirus Displays Enhanced Oncolysis while Maintaining Expression of Immunotherapeutic Agents. PLoS One 10:e0145272
Cripe, Timothy P; Chen, Chun-Yu; Denton, Nicholas L et al. (2015) Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children. Mol Ther Oncolytics 2:
Oliva, Claudia R; Markert, Tahireh; Gillespie, G Yancey et al. (2015) Nuclear-encoded cytochrome c oxidase subunit 4 regulates BMI1 expression and determines proliferative capacity of high-grade gliomas. Oncotarget 6:4330-44

Showing the most recent 10 out of 27 publications