The University of Kansas Medical Center (KUMC) presents an application for continued support for the Kansas IDeA Network for Biomedical Research Excellence (K-INBRE). The K-INBRE links KUMC (Lead Institution) with the two major doctoral-degree-granting institutions in Kansas (University of Kansas-Lawrence, KU-L; Kansas State Univ., KSU) as Graduate Partner Institutions (GPIs), and with seven Undergraduate Partner Institutions (UPls). UPls include six Kansas undergraduate campuses (Emporia State Univ., Ft. Hays State Univ., Haskell Indian Nations Univ., Pittsburg State Univ., Washburn Univ., Wichita State Univ.) and Langston Univ. (Langston, OK). Haskell Indian Nations Univ. and Langston Univ. increase diversity in the network as the first is devoted to education and training of native Americans and the second enrolls primarily black undergraduates. The long-range objective of the Kansas program is to strengthen the state's research capacity in Cell and Developmental Biology by building on the successes of the current K-INBRE. The structure and operational principles of the K-INBRE, which focus on training for biomedical research, networking and intercampus communication and the presence of a sophisticated bioinformatics program, were established during the previous years. These goals remain similar as the KINBRE has had a significant impact on biomedical research in the State of Kansas, but novel programs are tailored to fit new emerging areas associated with translational research. Programs conducted by the KINBRE have had measurable success in reaching their stated goals.
The Specific Aims proposed for the next phase of the K-INBRE are to (1) maintain and improve the current multi-disciplinary research network in Cell and Developmental Biology in the State of Kansas, strengthening both communication channels and research infrastructure, (2) enhance science and technology knowledge and integration in Kansas by offering sophisticated bioinformatics technology and education, (3) stimulate basic and translational research in the State of Kansas via mentored, interdisciplinary research opportunities. Within these Aims, new features that improve the K-INBRE include broadening funding for research careers together with improvements in oversight and the mentoring process, promoting an integrated systems biology approach within our bioinformatics network, and incorporating training for translational research into the K-INBRE goals so as to smooth the progress of scientific discoveries into the clinical arena.

Public Health Relevance

Research in cell and developmental biology is essential to advancing our understanding of cellular processes of health and disease. Such research relies on generation of a strong, well educated workforce, ready availability of the tools of discovery and emphasis on applying the results of discovery research to problems of human health. In building a distinguished center of research in cell and developmental biology in Kansas, the K-INBRE vigorously pursues all three of these key strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103418-17
Application #
9282624
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Arora, Krishan
Project Start
2001-09-18
Project End
2019-04-30
Budget Start
2017-05-01
Budget End
2018-04-30
Support Year
17
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Kansas
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
016060860
City
Kansas City
State
KS
Country
United States
Zip Code
66160
Yao, Li; Flynn, Nikol (2018) Dental pulp stem cell-derived chondrogenic cells demonstrate differential cell motility in type I and type II collagen hydrogels. Spine J 18:1070-1080
Ronnebaum, Trey A; McFarlane, Jeffrey S; Prisinzano, Thomas E et al. (2018) Stuffed Methyltransferase Catalyzes Penultimate Step of Pyochelin Biosynthesis. Biochemistry :
Grieshober, Laurie; Graw, Stefan; Barnett, Matt J et al. (2018) Methylation-derived Neutrophil-to-Lymphocyte Ratio and Lung Cancer Risk in Heavy Smokers. Cancer Prev Res (Phila) 11:727-734
Knewtson, Kelsey E; Rane, Digamber; Peterson, Blake R (2018) Targeting Fluorescent Sensors to Endoplasmic Reticulum Membranes Enables Detection of Peroxynitrite During Cellular Phagocytosis. ACS Chem Biol 13:2595-2602
Pierucci-Alves, Fernando; Midura-Kiela, Monica T; Fleming, Sherry D et al. (2018) Transforming Growth Factor Beta Signaling in Dendritic Cells Is Required for Immunotolerance to Sperm in the Epididymis. Front Immunol 9:1882
Gujar, Mahekta R; Sundararajan, Lakshmi; Stricker, Aubrie et al. (2018) Control of Growth Cone Polarity, Microtubule Accumulation, and Protrusion by UNC-6/Netrin and Its Receptors in Caenorhabditis elegans. Genetics 210:235-255
Cooper, Michael A; McCoin, Colin; Pei, Dong et al. (2018) Reduced mitochondrial reactive oxygen species production in peripheral nerves of mice fed a ketogenic diet. Exp Physiol 103:1206-1212
Bansal, Sunil; Kim, Hae Jin; Na, GunNam et al. (2018) Towards the synthetic design of camelina oil enriched in tailored acetyl-triacylglycerols with medium-chain fatty acids. J Exp Bot 69:4395-4402
Kumar, T Rajendra (2018) Fshb Knockout Mouse Model, Two Decades Later and Into the Future. Endocrinology 159:1941-1949
Dahanayake, Jayangika N; Mitchell-Koch, Katie R (2018) Entropy connects water structure and dynamics in protein hydration layer. Phys Chem Chem Phys 20:14765-14777

Showing the most recent 10 out of 411 publications