Cell, Tissue, and Molecular Analysis Core (CTMA core) Cell, tissue and molecular biology techniques are the cornerstone of biomedical research. A major hindrance for junior faculty in conducting this research is a lack of ultramodern facilities and specialized expertise commonly found in states with major NIH funding. To advance the regenerative medicine research potential within South Carolina, we have identified three thrust areas which will serve the needs of our SC BioCRAFT COBRE projects: 1) molecular biology, 2) stem cell biology, and 3) histology and advanced imaging. Outstanding facilities and labs directed by experienced investigators with expertise in these three thrust areas have been identified and brought together under the aegis of the Core to serve the needs of both COBRE PIs, and other investigators statewide. To achieve the goals of the COBRE center, our core proposes three specific aims: 1) to promote and facilitate advanced molecular biology research, 2) to enhance histology and advanced imaging infrastructure and expertise and 3) augment adult and induced stem cell research capabilities. The Core will be directed by experienced, NIH funded scientists with complementary expertise in regenerative medicine, gene and protein expression and manipulation, adult and induced stem cells, and advanced histology, electron microscopy and biophotonics. Fully functional and generously equipped facilities in Clemson, Greenville, Spartanburg, and Charleston SC will be joined to provide support for idea development, overcoming technical challenges and leading the target projects towards significant outcomes. The core has an impressive potential and provides all the necessary equipment and expertise to serve the SC investigators. Moreover, the core will foster a collaborative mentoring environment that will serve to introduce the newest techniques available in regenerative medicine research and greatly enhance the sustainability of our ongoing COBRE initiative.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
2P20GM103444-06
Application #
8742733
Study Section
Special Emphasis Panel (ZGM1)
Project Start
2014-07-01
Project End
2019-04-30
Budget Start
2014-07-01
Budget End
2015-04-30
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Clemson University
Department
Type
DUNS #
City
Clemson
State
SC
Country
United States
Zip Code
29634
Yu, Jin; Zhu, Hong; Perry, Stephen et al. (2017) Daily supplementation with GrandFusion® improves memory and learning in aged rats. Aging (Albany NY) 9:1041-1054
Gil, Dmitry; Shuvaev, Sergey; Frank-Kamenetskii, Anastasia et al. (2017) Novel Antibacterial Coating on Orthopedic Wires To Eliminate Pin Tract Infections. Antimicrob Agents Chemother 61:
Ghatak, Shibnath; Markwald, Roger R; Hascall, Vincent C et al. (2017) Transforming growth factor ?1 (TGF?1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts. J Biol Chem 292:10465-10489
Angelé-Martínez, Carlos; Nguyen, Khanh Van T; Ameer, Fathima S et al. (2017) Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology 11:278-288
Tan, Yu; Richards, Dylan; Coyle, Robert C et al. (2017) Cell number per spheroid and electrical conductivity of nanowires influence the function of silicon nanowired human cardiac spheroids. Acta Biomater 51:495-504
Richards, Dylan; Jia, Jia; Yost, Michael et al. (2017) 3D Bioprinting for Vascularized Tissue Fabrication. Ann Biomed Eng 45:132-147
Ghatak, Shibnath; Hascall, Vincent C; Markwald, Roger R et al. (2017) Transforming growth factor ?1 (TGF?1)-induced CD44V6-NOX4 signaling in pathogenesis of idiopathic pulmonary fibrosis. J Biol Chem 292:10490-10519
Richards, Dylan J; Coyle, Robert C; Tan, Yu et al. (2017) Inspiration from heart development: Biomimetic development of functional human cardiac organoids. Biomaterials 142:112-123
Gwak, So-Jung; Macks, Christian; Bae, Sooneon et al. (2017) Physicochemical stability and transfection efficiency of cationic amphiphilic copolymer/pDNA polyplexes for spinal cord injury repair. Sci Rep 7:11247
Gwak, So-Jung; Macks, Christian; Jeong, Da Un et al. (2017) RhoA knockdown by cationic amphiphilic copolymer/siRhoA polyplexes enhances axonal regeneration in rat spinal cord injury model. Biomaterials 121:155-166

Showing the most recent 10 out of 109 publications