This core is designed to provide quantitative magnetic resonance imaging (MRI), image localized spectroscopy (MRS), spectroscopic imaging (MRSI) and single photon emission computed tomography/Xray computed tomography (SPECT/CT) for in-vivo assays of cell and drug biodistribution and efficacy. Project support includes pharmacokinetic measures of nanomaterial biodistribution (Projects 6, 7, 9, 10), measures of disease progression/drug efficacy (Project 7), and tissue perfusion measurements (Project 7). In addition. Core faculty will be involved in the training of new investigators on available methods to accelerate in-vivo studies of nanomedication effects. Methods including cardiac and vascular function, tumor morphology and perfusion, diffusion tensor imaging, and magnetic resonance spectroscopy (MRS), both 31P MRS and IH MRS, are available. Some of these methods have been extensively used by other nanomedicine researchers in investigations of the effects of disease and the ability for nanoformulations to ameliorate these changes. These abilities will be critical to the advancement of the nanomedicine program in general and the ability to meet the needs of current and future NCN faculty

Public Health Relevance

Non-invasive evaluation using clinically applicable imaging methods is a critical step in the translation pathway towards human use of nanomedications. Access to experts in imaging and state-of-the-art equipment will allow for training new investigators in the use of quantitative in-vivo methodologies and the important details to be addressed when planning such experiments.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-TWD-Y (C2))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Nebraska Medical Center
United States
Zip Code
Macha, M A; Rachagani, S; Pai, P et al. (2015) MUC4 regulates cellular senescence in head and neck squamous cell carcinoma through p16/Rb pathway. Oncogene 34:1698-708
Macha, Muzafar A; Seshacharyulu, Parthasarathy; Krishn, Shiv Ram et al. (2014) MicroRNAs (miRNAs) as biomarker(s) for prognosis and diagnosis of gastrointestinal (GI) cancers. Curr Pharm Des 20:5287-97
Gutti, Tanuja L; Knibbe, Jaclyn S; Makarov, Edward et al. (2014) Human hepatocytes and hematolymphoid dual reconstitution in treosulfan-conditioned uPA-NOG mice. Am J Pathol 184:101-9
Yi, Xiang; Manickam, Devika S; Brynskikh, Anna et al. (2014) Agile delivery of protein therapeutics to CNS. J Control Release 190:637-63
Alakhova, Daria Y; Kabanov, Alexander V (2014) Pluronics and MDR reversal: an update. Mol Pharm 11:2566-78
Savalia, Krupa; Manickam, Devika S; Rosenbaugh, Erin G et al. (2014) Neuronal uptake of nanoformulated superoxide dismutase and attenuation of angiotensin II-dependent hypertension after central administration. Free Radic Biol Med 73:299-307
Shi, Wen; Ogbomo, Sunny M; Wagh, Nilesh K et al. (2014) The influence of linker length on the properties of cathepsin S cleavable (177)Lu-labeled HPMA copolymers for pancreatic cancer imaging. Biomaterials 35:5760-70
Gupta, Suprit; Batra, Surinder; Jain, Maneesh (2014) Antibody labeling with radioiodine and radiometals. Methods Mol Biol 1141:147-57
Nukolova, Natalia V; Oberoi, Hardeep S; Zhao, Yi et al. (2013) LHRH-targeted nanogels as a delivery system for cisplatin to ovarian cancer. Mol Pharm 10:3913-21
Zhou, Zhengyuan; Wagh, Nilesh K; Ogbomo, Sunny M et al. (2013) Synthesis and in vitro and in vivo evaluation of hypoxia-enhanced 111In-bombesin conjugates for prostate cancer imaging. J Nucl Med 54:1605-12

Showing the most recent 10 out of 16 publications