Obesity is approaching epidemic state in the western worid and is a known risk factor for acute myocardial infarction (AMI). AMI and the subsequent ischemic heart disease (IHD) are often complicated with high mortality and poor overall prognosis despite significant advances in medical therapy and revascularization strategies. Currently, short of heart transplantation with all of its inherit limitations, there are no available treatment strategies that replace the infracted myocardium and therapies are largely palliative. Paradoxically, obesity may also confer a protective effect against AMI-associated remodeling which leads to IHD. The molecular kiasis for this protection is poorly understood. AMI initiates poorly understood innate reparatory mechanisms through which BMSPCs are mobilized and home towards the ischemic myocardium contributing to myocardial regeneration and correlating with cardiac recovery. Our preliminary data indicates that bioactive lipids such as sphingosine-1 phosphate (SIP), but not traditional chemokines, play a quintessential role in this mobilization and homing. Interestingly, obesity and the associated metabolic syndrome are associated with alterations in bioactive lipids'metabolism. Our objective in this application, therefore, is to develop better understanding ofthe obesity-associated alterations in AMI-induced stem cell mobilization pathways, specially those involving bioactive lipids, and devise therapies that hamess this process for therapeutic myocardial regeneration strategies. Our central hypothesis has been formulated based upon the existing literature and our strong preliminary data demonstrating that BMSPCs express SIP receptors and will migrate towards plasma from AMI patients in an SI P dependent fashion. Our rationale for these studies is that understanding the protective role of bioactive lipids and stem cell mobilization during AMI in obesity would help establish a strong scientific framework for eventual generalizable human myocardial regenerative clinical trials utilizing the available and new pharmacological modulators of bioactive lipids and their receptors. In addition to clinical studies, our approach will exploit small molecule-strategies in mouse models through examining the obesity associated molecular and cellular pathways, specially those involving bioactive lipids, that are activated by myocardial infarction (Aim 1);and examine the modulation of bioactive lipids'metabolism and receptor expression to enhance cardiac recovery following AMI (Aim 2).

Public Health Relevance

Obesity increases the risk for acute myocardial infarction but may paradoxically exert protective effect from the subsequent cardiac remodeling. Our objective is to develop better understanding of obesity-associated alterations in myocardial infarction-induced stem cell mobilization pathways, specially those involving bioactive lipids, and devise therapies that'harness this process for myocardial regeneration strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103527-07
Application #
8733727
Study Section
Special Emphasis Panel (ZGM1-TWD-Y)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
7
Fiscal Year
2014
Total Cost
$255,066
Indirect Cost
$85,066
Name
University of Kentucky
Department
Type
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40506
Murphy, Margaret O; Petriello, Michael C; Han, Sung Gu et al. (2016) Exercise protects against PCB-induced inflammation and associated cardiovascular risk factors. Environ Sci Pollut Res Int 23:2201-11
Lolay, Georges A; Abdel-Latif, Ahmed K (2016) Trauma induced myocardial infarction. Int J Cardiol 203:19-21
Park, Se-Hyung; Liu, Zun; Sui, Yipeng et al. (2016) IKKβ Is Essential for Adipocyte Survival and Adaptive Adipose Remodeling in Obesity. Diabetes 65:1616-29
Adamiak, M; Poniewierska-Baran, A; Borkowska, S et al. (2016) Evidence that a lipolytic enzyme-hematopoietic-specific phospholipase C-β2-promotes mobilization of hematopoietic stem cells by decreasing their lipid raft-mediated bone marrow retention and increasing the promobilizing effects of granulocytes. Leukemia 30:919-28
Pumphrey, Ashley; Yang, Zhengshi; Ye, Shaojing et al. (2016) Advanced cardiac chemical exchange saturation transfer (cardioCEST) MRI for in vivo cell tracking and metabolic imaging. NMR Biomed 29:74-83
Platt, Kristen M; Charnigo, Richard J; Shertzer, Howard G et al. (2016) Branched-Chain Amino Acid Supplementation in Combination with Voluntary Running Improves Body Composition in Female C57BL/6 Mice. J Diet Suppl 13:473-86
Wu, Chia-Hua; Mohammadmoradi, Shayan; Thompson, Joel et al. (2016) Adipocyte (Pro)Renin-Receptor Deficiency Induces Lipodystrophy, Liver Steatosis and Increases Blood Pressure in Male Mice. Hypertension 68:213-9
Howatt, Deborah A; Balakrishnan, Anju; Moorleghen, Jessica J et al. (2016) Leukocyte Calpain Deficiency Reduces Angiotensin II-Induced Inflammation and Atherosclerosis But Not Abdominal Aortic Aneurysms in Mice. Arterioscler Thromb Vasc Biol 36:835-45
Li, Jing; Song, Jun; Zaytseva, Yekaterina Y et al. (2016) An obligatory role for neurotensin in high-fat-diet-induced obesity. Nature 533:411-5
Hamlet, Sean M; Haggerty, Christopher M; Suever, Jonathan D et al. (2016) Optimal configuration of respiratory navigator gating for the quantification of left ventricular strain using spiral cine displacement encoding with stimulated echoes (DENSE) MRI. J Magn Reson Imaging :

Showing the most recent 10 out of 161 publications