Normal aging is accompanied by declines in cognitive control that are mediated, in part, by compromised prefrontal cortex function. However the repercussions of prefrontal changes on other cortical structures recruited for cognitive control are not well understood. In this project control of auditory spatial attention will be used to study interactions between prefrontal and posterior cortical regions, and how these interactions are affected by age and task demands. Our overarching hypothesis is that age-related changes in cognitive control are mediated by network level impairments in coordination between prefrontal and parietal/temporal lobe areas. Corollary hypotheses are that aging is associated with constrained spatial attention gradients (Aim 1), and greater sensitivity of spatial orienting to perceptual and short-term memory load manipulations (Aim 2), both of which can be improved by magnetic stimulation of cortex (Aim 3). Methods include using EEG and event-related potentials to define cortical processing and interactions between prefrontal and posterior areas. Spatial gradients will be mapped by presenting acoustic virtual reality stimuli from locations in the frontal azimuth plane during task performance. Transcranial magnetic stimulation will be used to temporarily influence prefrontal cortical activity. The effects of transcranial magnetic stimulation will be assessed using behavioral and EEG/event-related potential measures.
Three Specific Aims are proposed.
In Aim 1 age differences in spatial attention gradients will be assessed using neuroelectric measures of automatic (mismatch negativity) and controlled (P3a) processing of distractor stimuli.
Aim 2 will test the hypothesis that declines in cognitive control are associated with reduced perceptual capacity and greater proactive interference in short-term memory. Separate experiments will parametrically vary perceptual or short-term memory load, with a separate assessment of high vs. low proactive interference conditions in the memory load experiments.
Aim 3 will determine if magnetic stimulation of cortex can broaden spatial attention gradients and improve performance on cognitive control tasks.

Public Health Relevance

The NIA goal of understanding healthy aging is addressed by defining cognitive and neural mechanisms of normal aging, which can also be applied to early detection of age-related neurodegenerative disorders such as Alzheimer's disease. Quality of life could also be improved by developing the brain stimulation methodologies in this project to counteract cognitive decline in normal aging and neurological disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103629-03
Application #
8663295
Study Section
Special Emphasis Panel (ZRR1)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Tulane University
Department
Type
DUNS #
City
New Orleans
State
LA
Country
United States
Zip Code
70118
Zhang, Yanqing; Fava, Genevieve E; Wang, Hongjun et al. (2016) PAX4 Gene Transfer Induces α-to-β Cell Phenotypic Conversion and Confers Therapeutic Benefits for Diabetes Treatment. Mol Ther 24:251-60
Burks, Hope E; Phamduy, Theresa B; Azimi, Mohammad S et al. (2016) Laser Direct-Write Onto Live Tissues: A Novel Model for Studying Cancer Cell Migration. J Cell Physiol 231:2333-8
Boraas, Liana C; Ahsan, Tabassum (2016) Lack of vimentin impairs endothelial differentiation of embryonic stem cells. Sci Rep 6:30814
Zhou, Xiang; Hao, Qian; Liao, Peng et al. (2016) Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator. Elife 5:
Mock, Jeffrey R; Foundas, Anne L; Golob, Edward J (2016) Cortical activity during cued picture naming predicts individual differences in stuttering frequency. Clin Neurophysiol 127:3093-101
Yariswamy, Manjunath; Yoshida, Tadashi; Valente, Anthony J et al. (2016) Cardiac-restricted Overexpression of TRAF3 Interacting Protein 2 (TRAF3IP2) Results in Spontaneous Development of Myocardial Hypertrophy, Fibrosis, and Dysfunction. J Biol Chem 291:19425-36
Sloas, David C; Stewart, Scott A; Sweat, Richard S et al. (2016) Estimation of the Pressure Drop Required for Lymph Flow through Initial Lymphatic Networks. Lymphat Res Biol 14:62-9
Quijano, Lina M; Lynch, Kristen M; Allan, Christopher H et al. (2016) Looking Ahead to Engineering Epimorphic Regeneration of a Human Digit or Limb. Tissue Eng Part B Rev 22:251-62
Jiang, James C; Stumpferl, Stefan W; Tiwari, Anurag et al. (2016) Identification of the Target of the Retrograde Response that Mediates Replicative Lifespan Extension in Saccharomyces cerevisiae. Genetics 204:659-673
Wolfe, Russell P; Guidry, Julia B; Messina, Stephanie L et al. (2016) Applying Shear Stress to Pluripotent Stem Cells. Methods Mol Biol 1341:377-89

Showing the most recent 10 out of 50 publications