The long-term objectives of this project are to understand the mechanisms and functions of DNA damage checkpoints in embryonic development and the chemotherapy response. Cells execute a protective response to chemotherapies which cause DNA damage or inhibit DNA replication. This involves a complex signaling network driven by the ATR (Ataxia-Telangiectasia and Rad3-related) kinase and its upstream regulator TopBP1 (DNA Topoisomerase ll-Binding Protein 1). Besides serving this protective function, ATR and TopBP1 also maintain genomic integrity during unperturbed DNA replication and embryonic development, and inherited mutations that disrupt the ATR signaling pathway cause human developmental disorders. Thus, pharmacologic inhibition of DNA damage checkpoints to sensitize cancer cells to chemotherapy is likely to cause side effects. TopBP1 has eight BRCT (BRCA1 C-terminal) protein interaction domains and is multifunctional, also acting in DNA replication, DNA repair, and transcription. TopBP1 likely participates in such diverse aspects of DNA metabolism by acting as a central component of multiple functionally distinct subcomplexes, but these various subcomplexes remain to be defined. The current proposal consists of three aims.
The first Aim i s focused on characterizing an interaction between TopBP1 and an entirely novel protein called TICRR (TopBP1-interacting checkpoint and replication regulator). TICRR interacts with the first two BRCT domains of TopBP1 and is required for DNA replication initiation and cell cycle arrest following DNA damage.
The second Aim i s focused on identifying and characterizing novel TopBP1 and TICRR protein interactions.
The third Aim determines the functions of TICRR and TopBP1 during zebrafish embryonic development. Knowledge from these studies will lead to a better understanding of DNA damage responses to chemotherapy as well as illuminate the molecular underpinnings of human developmental disorders caused by defects in ATR signaling. Understanding differences between how checkpoint proteins function in normal cell proliferation versus in the chemotherapy response will facilitate the development of treatment strategies that inhibit checkpoint signaling in tumors, while leaving normal cells unperturbed.

Public Health Relevance

Commonly used cancer treatments block DNA replication and damage DNA, thereby killing both cancer cells and healthy proliferating cells alike. Broadly, we aim to reveal how cells replicate DNA and respond to DNA damage so that we may develop cancer treatments with fewer side effects. Specifically, we will elucidate how a protein called TopBP1 acts with other proteins in DNA replication and the DNA damage response.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
1P20GM103636-01A1
Application #
8466515
Study Section
Special Emphasis Panel (ZGM1-TWD-B (CB))
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
1
Fiscal Year
2013
Total Cost
$327,600
Indirect Cost
$132,600
Name
Oklahoma Medical Research Foundation
Department
Type
DUNS #
077333797
City
Oklahoma City
State
OK
Country
United States
Zip Code
73104
Duan, Hongliang; Arora, Daleep; Li, Yu et al. (2016) Identification of 1,2,3-triazole derivatives that protect pancreatic β cells against endoplasmic reticulum stress-mediated dysfunction and death through the inhibition of C/EBP-homologous protein expression. Bioorg Med Chem 24:2621-30
Borgogno, María V; Monti, Mariela R; Zhao, Weixing et al. (2016) Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange. J Biol Chem 291:4928-38
Tsou, Pei-Suen; Wren, Jonathan D; Amin, M Asif et al. (2016) Histone Deacetylase 5 Is Overexpressed in Scleroderma Endothelial Cells and Impairs Angiogenesis via Repression of Proangiogenic Factors. Arthritis Rheumatol 68:2975-2985
Griffin, Timothy M; Humphries, Kenneth M; Kinter, Michael et al. (2016) Nutrient sensing and utilization: Getting to the heart of metabolic flexibility. Biochimie 124:74-83
Duan, Hongliang; Lee, Jae Wook; Moon, Sung Won et al. (2016) Discovery, Synthesis, and Evaluation of 2,4-Diaminoquinazolines as a Novel Class of Pancreatic β-Cell-Protective Agents against Endoplasmic Reticulum (ER) Stress. J Med Chem 59:7783-800
Siefert, Joseph C; Clowdus, Emily A; Sansam, Christopher L (2015) Cell cycle control in the early embryonic development of aquatic animal species. Comp Biochem Physiol C Toxicol Pharmacol 178:8-15
Larabee, Chelsea M; Georgescu, Constantin; Wren, Jonathan D et al. (2015) Expression profiling of the ubiquitin conjugating enzyme UbcM2 in murine brain reveals modest age-dependent decreases in specific neurons. BMC Neurosci 16:76
Dozmorov, Mikhail G; Adrianto, Indra; Giles, Cory B et al. (2015) Detrimental effects of duplicate reads and low complexity regions on RNA- and ChIP-seq data. BMC Bioinformatics 16 Suppl 13:S10
Pezza, Roberto J (2015) Mechanisms of chromosome segregation in meiosis--new views on the old problem of aneuploidy. FEBS J 282:2424-5
Lee, Chih-Ying; Horn, Henning F; Stewart, Colin L et al. (2015) Mechanism and regulation of rapid telomere prophase movements in mouse meiotic chromosomes. Cell Rep 11:551-63

Showing the most recent 10 out of 33 publications