Voltage-gated calcium channels are the engines that drive the synapse. They are required for vesicle exocytosis, and it is now clear that these molecules are critically important to the dynamics of formation, maintenance, adaption and elimination that underlie changes in neural networks. Therefore, as we study these molecules and their mode of action, we will gain a much clearer understanding of the basic assembly of the nervous system. VGCCs have been linked to human diseases and disorders, and our goal is to further the understanding of how these proteins contribute to neuronal development. Using animals that have mutations that inactivate or hyperactive synaptic VGCCs we will obtain transcriptome profiles to identify genes that are transcriptionally regulated by VGCC functional status. We will then target those genes for knockdown by RNAi to find molecules that contribute to VGCC-dependent synapse addition. Finally we will seek to visualize how calcium may be dynamic during times when synapses are being modified during development to correlate intracellular levels of calcium with specific changes in synapses. The organization of the C. elegans neuromuscular system provides a powerful genetic and cell biological model to study development. The primary motorneurons have many similarities to vertebrate CNS neurons, which are more difficult to study in vivo. C. elegans may provide important insights into the mechanisms that underlie the formation and spacing of these types of synapses in vivo.

Public Health Relevance

The work of nervous systems is largely driven by small molecular gates called synapses. Understanding how these structures grow and change as a property of activity is essential to our ability to diagnose, understand and treat disorders of the human nervous system, ranging from epilepsy and neuropathic pain to mood disorders, mental retardation or autism.

Agency
National Institute of Health (NIH)
Type
Exploratory Grants (P20)
Project #
5P20GM103638-03
Application #
8691918
Study Section
Special Emphasis Panel (ZRR1)
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Kansas Lawrence
Department
Type
DUNS #
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Zhao, Zheng; Yang, Yang; Zeng, Yong et al. (2016) A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 16:489-96
Grismer, Jesse L; Schulte 2nd, James A; Alexander, Alana et al. (2016) The Eurasian invasion: phylogenomic data reveal multiple Southeast Asian origins for Indian Dragon Lizards. BMC Evol Biol 16:43
Chakraborty, Aishik; Hui, Erica; Waring, Alan J et al. (2016) Combined effect of synthetic protein, Mini-B, and cholesterol on a model lung surfactant mixture at the air-water interface. Biochim Biophys Acta 1858:904-12
Huang, Wei; Beer, Rebecca L; Delaspre, Fabien et al. (2016) Sox9b is a mediator of retinoic acid signaling restricting endocrine progenitor differentiation. Dev Biol 418:28-39
Mosher, Laura J; Frau, Roberto; Pardu, Alessandra et al. (2016) Selective activation of D1 dopamine receptors impairs sensorimotor gating in Long-Evans rats. Br J Pharmacol 173:2122-34
Miller, Danny E; Smith, Clarissa B; Kazemi, Nazanin Yeganeh et al. (2016) Whole-Genome Analysis of Individual Meiotic Events in Drosophila melanogaster Reveals That Noncrossover Gene Conversions Are Insensitive to Interference and the Centromere Effect. Genetics 203:159-71
McGill, Jodi L; Nair, Arathy D S; Cheng, Chuanmin et al. (2016) Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host. PLoS One 11:e0148229
Hasan, Anwarul; Waters, Renae; Roula, Boustany et al. (2016) Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy. Macromol Biosci 16:958-77
McGill, Jodi L; Rusk, Rachel A; Guerra-Maupome, Mariana et al. (2016) Bovine Gamma Delta T Cells Contribute to Exacerbated IL-17 Production in Response to Co-Infection with Bovine RSV and Mannheimia haemolytica. PLoS One 11:e0151083
Park, Hyewon; Galbraith, Richard; Turner, Thaddeus et al. (2016) Loss of Ewing sarcoma EWS allele promotes tumorigenesis by inducing chromosomal instability in zebrafish. Sci Rep 6:32297

Showing the most recent 10 out of 75 publications