Voltage-gated calcium channels are the engines that drive the synapse. They are required for vesicle exocytosis, and it is now clear that these molecules are critically important to the dynamics of formation, maintenance, adaption and elimination that underlie changes in neural networks. Therefore, as we study these molecules and their mode of action, we will gain a much clearer understanding of the basic assembly of the nervous system. VGCCs have been linked to human diseases and disorders, and our goal is to further the understanding of how these proteins contribute to neuronal development. Using animals that have mutations that inactivate or hyperactive synaptic VGCCs we will obtain transcriptome profiles to identify genes that are transcriptionally regulated by VGCC functional status. We will then target those genes for knockdown by RNAi to find molecules that contribute to VGCC-dependent synapse addition. Finally we will seek to visualize how calcium may be dynamic during times when synapses are being modified during development to correlate intracellular levels of calcium with specific changes in synapses. The organization of the C. elegans neuromuscular system provides a powerful genetic and cell biological model to study development. The primary motorneurons have many similarities to vertebrate CNS neurons, which are more difficult to study in vivo. C. elegans may provide important insights into the mechanisms that underlie the formation and spacing of these types of synapses in vivo.

Public Health Relevance

The work of nervous systems is largely driven by small molecular gates called synapses. Understanding how these structures grow and change as a property of activity is essential to our ability to diagnose, understand and treat disorders of the human nervous system, ranging from epilepsy and neuropathic pain to mood disorders, mental retardation or autism.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103638-03
Application #
8691918
Study Section
Special Emphasis Panel (ZRR1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Kansas Lawrence
Department
Type
DUNS #
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Gujar, Mahekta R; Sundararajan, Lakshmi; Stricker, Aubrie et al. (2018) Control of Growth Cone Polarity, Microtubule Accumulation, and Protrusion by UNC-6/Netrin and Its Receptors in Caenorhabditis elegans. Genetics 210:235-255
Fresta, Claudia G; Chakraborty, Aishik; Wijesinghe, Manjula B et al. (2018) Non-toxic engineered carbon nanodiamond concentrations induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells. Cell Death Dis 9:245
Field, Thomas M; Shin, Mimi; Stucky, Chase S et al. (2018) Electrochemical Measurement of Dopamine Release and Uptake in Zebrafish Following Treatment with Carboplatin. Chemphyschem 19:1192-1196
McGill, Jodi L; Kelly, Sean M; Kumar, Pankaj et al. (2018) Efficacy of mucosal polyanhydride nanovaccine against respiratory syncytial virus infection in the neonatal calf. Sci Rep 8:3021
Waters, Renae; Alam, Perwez; Pacelli, Settimio et al. (2018) Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomater 69:95-106
Saylor, Rachel A; Lunte, Susan M (2018) PDMS/glass hybrid device with a reusable carbon electrode for on-line monitoring of catecholamines using microdialysis sampling coupled to microchip electrophoresis with electrochemical detection. Electrophoresis 39:462-469
Zhu, Qingfu; Heon, Mikala; Zhao, Zheng et al. (2018) Microfluidic engineering of exosomes: editing cellular messages for precision therapeutics. Lab Chip 18:1690-1703
Pacelli, Settimio; Basu, Sayantani; Berkland, Cory et al. (2018) Design of a cytocompatible hydrogel coating to modulate properties of ceramic-based scaffolds for bone repair. Cell Mol Bioeng 11:211-217
Wessinger, Carolyn A; Kelly, John K; Jiang, Peng et al. (2018) SNP-skimming: A fast approach to map loci generating quantitative variation in natural populations. Mol Ecol Resour 18:1402-1414
Zhang, Peng; Crow, Jennifer; Lella, Divya et al. (2018) Ultrasensitive quantification of tumor mRNAs in extracellular vesicles with an integrated microfluidic digital analysis chip. Lab Chip 18:3790-3801

Showing the most recent 10 out of 134 publications