The Immunologic Monitoring (IM) Core will serve as a shared resource to assist the target faculty of the COBRE to pursue high quality research by monitoring immune cell functions following treatment with the dietary supplements in naive and experimental models of inflammatory disease. The Core will be useful to characterize the immune status before, during and after treatment of diseased animals with the plant products so as to provide insights into their prognostic and therapeutic effects. In addition, while the individual projects deal with specialized studies related to the effects of plant products on macrophages that play a pivotal role in inflammation, it is critical to know how these would affect the other immune cells and the overall immunity. This is especially important because inflammatory diseases are systemic and involve multiple types of immune cells. Furthermore, such information on the immunologic effects of the plant derivates is critical in the development of bench-to-bedside research. Specifically, the IM Core will 1) offer a wide range of state-of-the-art resources to pursue cellular and molecular immunological assays so as to enable the investigators to pursue cutting-edge research on the projects. 2) provide technological assistance and training in the use of major equipment by the users 3) participate in the design of the experiments, selection of the appropriate assays, trouble-shoot and interpretation of results. 4) develop and standardize new technologies based on the changing needs of the users by optimization and evaluation of sensitivity, specificity and reproducibility. 5) aid in data collection, evaluation and analysis as well as sharing of the data to enhance collaborations. There are two major components of this core. The core will 1) Serve as a resource of multi-user equipment 2) Perform Immune Function Assessment by 1) Evaluation of the general health status 2) Level I immunological testing which includes a variety of assays that examine the functions of T cells, B cells, NK cells, dendritic cells and macrophages. 3) Level II immunological testing of the genetic, transcriptional and epigenetic mechanisms underlying immune cell dysregulation. This functional assessment performed by the IM Core will complement the cell phenotyping and animal imaging studies performed by other cores and thereby lead to comprehensive integration between projects and cores. These shared resources could be used for translational studies in the future. In summary, the IM Core will provide effective and economical shared resources and service to conduct high-quality research that will lead to increased productivity and enhanced interactions between investigators of all the projects resulting in their ability to attract independent, extramural funding, and advancement of scientific careers.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
1P20GM103641-01
Application #
8460793
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
Project End
2013-05-31
Budget Start
2012-09-01
Budget End
2013-05-31
Support Year
1
Fiscal Year
2012
Total Cost
$281,500
Indirect Cost
$55,500
Name
University of South Carolina at Columbia
Department
Type
DUNS #
041387846
City
Columbia
State
SC
Country
United States
Zip Code
29208
Bam, Marpe; Yang, Xiaoming; Sen, Souvik et al. (2017) Characterization of Dysregulated miRNA in Peripheral Blood Mononuclear Cells from Ischemic Stroke Patients. Mol Neurobiol :
Pate, Kayla M; Rogers, McCall; Reed, John Will et al. (2017) Anthoxanthin Polyphenols Attenuate A? Oligomer-induced Neuronal Responses Associated with Alzheimer's Disease. CNS Neurosci Ther 23:135-144
Finnell, Julie E; Lombard, Calliandra M; Padi, Akhila R et al. (2017) Physical versus psychological social stress in male rats reveals distinct cardiovascular, inflammatory and behavioral consequences. PLoS One 12:e0172868
Finnell, Julie E; Lombard, Calliandra M; Melson, Michael N et al. (2017) The protective effects of resveratrol on social stress-induced cytokine release and depressive-like behavior. Brain Behav Immun 59:147-157
Shamran, Haidar; Singh, Narendra P; Zumbrun, Elizabeth E et al. (2017) Fatty acid amide hydrolase (FAAH) blockade ameliorates experimental colitis by altering microRNA expression and suppressing inflammation. Brain Behav Immun 59:10-20
Wood, Susan K; Valentino, Rita J (2017) The brain norepinephrine system, stress and cardiovascular vulnerability. Neurosci Biobehav Rev 74:393-400
Bam, M; Yang, X; Zumbrun, E E et al. (2017) Decreased AGO2 and DCR1 in PBMCs from War Veterans with PTSD leads to diminished miRNA resulting in elevated inflammation. Transl Psychiatry 7:e1222
Yanez, Maria; Blanchette, James; Jabbarzadeh, Ehsan (2017) Modulation of Inflammatory Response to Implanted Biomaterials Using Natural Compounds. Curr Pharm Des :
Chitrala, Kumaraswamy Naidu; Guan, Hongbing; Singh, Narendra P et al. (2017) CD44 deletion leading to attenuation of experimental autoimmune encephalomyelitis results from alterations in gut microbiome in mice. Eur J Immunol 47:1188-1199
Wood, Christopher S; Valentino, Rita J; Wood, Susan K (2017) Individual differences in the locus coeruleus-norepinephrine system: Relevance to stress-induced cardiovascular vulnerability. Physiol Behav 172:40-48

Showing the most recent 10 out of 122 publications