Decades of studies have provided ample evidence that glial neuroimmune activation contributes in the development of neuropathic pain. However, knowledge regarding the role of neural-glial interactions in the pathophysiology of neuropathic pain is currently lacking. In preclinical studies, calcitonin gene related peptide (CGRP), a peptide neurotransmitter, has been shown to be involved in peripheral nerve injuryinduced tactile hypersensitivity, a behavioral sign of neuropathic pain. Previously, we have also demonstrated a critical role of central nervous system (CNS) microglial CD40 in the maintenance of mechanical hypersensitivity post-peripheral nerve injury. In the current study, the possible interactions between microglial CD40 signaling and primary afferent neuron-released CGRP in regards to they affect glial cells in the spinal cord will be investigated. We hypothesize that following peripheral nerve injury, spinal cord CD40 mediates the release of CGRP from primary afferent nociceptors and this CGRP release promotes persistent pain behavior, particularly during the maintenance phase, through the induction of proinflammatory chemokine production by glia. This central hypothesis will be tested via both in vivo and in vitro studies. An established rodent neuropathic pain model, spinal nerve L5 transection (L5Tx), will be used for the in vivo studies. Dorsal root ganglia (DRG) neuron-microglia co-cultures and mixed glial cultures will be generated for the in vitro studies. The central hypothesis will be tested through 4 specific aims: 1) Examine lumbar spinal cord chemokine production following L5Tx in CD40 KO mice vs. WT mice and the role of selected chemokines in the development of behavioral hypersensitivity;2) Determine whether CGRP is involved in L5Tx-induced chemokine production and behavioral hypersensitivity;3) Evaluate the role of microglial CD40 in CGRP release by primary afferent neurons;and 4) Assess glial production of selected proinflammatory chemokines and upstream signaling pathways (mainly mitogen-activated protein kinase pathways) following CGRP stimulation in mixed glial cultures. The long-term goal of our study is to further understand the pathophysiology of nerve injury-induced neuropathic pain in order to uncover novel targets for new drug development leading to more efficacious treatments of neuropathic pain.

Public Health Relevance

Neuropathic pain, defined as pain initiated or caused by a primary lesion or dysfunction in the nervous system, is one of the most devastating kinds of chronic pain and is still largely treated sub-optimally. Delineating the mechanisms leading to neuropathic pain is of crucial importance and will accelerate the design of new, more effective treatments.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of New England
United States
Zip Code
Deal, Alex L; Erickson, Kristen J; Shiers, Stephanie I et al. (2016) Limbic system development underlies the emergence of classical fear conditioning during the third and fourth weeks of life in the rat. Behav Neurosci 130:212-30
Malon, Jennifer T; Cao, Ling (2016) Preparation of Primary Mixed Glial Cultures from Adult Mouse Spinal Cord Tissue. J Vis Exp :
Zhang, Yan; Williams, Dwight A; Zaidi, Saheem A et al. (2016) 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-(4'-pyridylcarboxamido)morphinan (NAP) Modulating the Mu Opioid Receptor in a Biased Fashion. ACS Chem Neurosci 7:297-304
Havelin, Joshua; Imbert, Ian; Cormier, Jennifer et al. (2016) Central Sensitization and Neuropathic Features of Ongoing Pain in a Rat Model of Advanced Osteoarthritis. J Pain 17:374-82
Malon, Jennifer T; Cao, Ling (2016) Calcitonin gene-related peptide contributes to peripheral nerve injury-induced mechanical hypersensitivity through CCL5 and p38 pathways. J Neuroimmunol 297:68-75
Harasawa, Ichiro; Johansen, Joshua P; Fields, Howard L et al. (2016) Alterations in the rostral ventromedial medulla after the selective ablation of μ-opioid receptor expressing neurons. Pain 157:166-73
Camire, Ryan B; Beaulac, Holly J; Willis, Colin L (2015) Transitory loss of glia and the subsequent modulation in inflammatory cytokines/chemokines regulate paracellular claudin-5 expression in endothelial cells. J Neuroimmunol 284:57-66
McParland, Aidan L; Follansbee, Taylor L; Vesenka, Gwendolyn D et al. (2015) Steroid Receptor Isoform Expression in Drosophila Nociceptor Neurons Is Required for Normal Dendritic Arbor and Sensitivity. PLoS One 10:e0140785
Remeniuk, Bethany; Sukhtankar, Devki; Okun, Alec et al. (2015) Behavioral and neurochemical analysis of ongoing bone cancer pain in rats. Pain 156:1864-73
Warner, Emily; Krivitsky, Rebecca; Cone, Katherine et al. (2015) Evaluation of a Postoperative Pain-Like State on Motivated Behavior in Rats: Effects of Plantar Incision on Progressive-Ratio Food-Maintained Responding. Drug Dev Res 76:432-41

Showing the most recent 10 out of 23 publications