The blood-brain barrier (BBB) is a highly regulated dynamic interface that separates the peripheral circulating blood supply from the central nervous system. Many acute and chronic neurodegenerative diseases show regional degenerative changes and modified BBB integrity. Migraine is a common and potentially debilitating neurological disorder characterized by a paroxysmal unilateral throbbing pain and is often associated with aura, nausea, vomiting, and photophobia. Triptans (serotonin IB/ID receptor agonists) are often used migraine therapy and are thought to relieve headache pain, in part, by inhibiting the release of pronociceptive transmitters through actions on 5HT1B/1D receptors on trigeminal afferent neurons. However, frequent use of triptans over an extended period increased the frequency of migraines in migraineurs, a condition termed medication overuse headache (MOH). Since migraineurs are the most susceptible to develop MOH, some common neuronal mechanisms between migraine and MOH may be expected. The mechanisms that underlie medication overuse headache are not fully understood. Evidence suggests that changes in BBB integrity may play a key role in several clinical situations in which migraine headache is a major feature. We suggest that prolonged exposure to triptans or medication withdrawal results in BBB dysfunction, increasing the potential for the induction of headache. To test this hypothesis, we will use neurochemical, and pharmacological strategies in a rat model of triptan-induced latent sensitization to determine potential structural and functional changes in BBB integrity in two pain pathway brain regions. Medication withdrawal will be precipitated with 5-HT1B/1D antagonist (GRI27935). Behavioral cutaneous allyodyna responses will be assessed and correlated to changes in BBB integrity. Establishing the mechanisms that underlie the pathobiology of MOH will assist in the development of new therapeutic strategies for the treatment of migraine and MOH.

Public Health Relevance

Approximately 22 million Americans suffer from migraine headaches. Frequent and extended use of migraine medication induces medication overuse headache (MOH) in 1-2% of the population. We propose a better understanding of the role of the blood-brain barrier is fundamental to understanding how migraine and MOH may occur and represents a novel pharmacological target in the development of novel therapeutics.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-4)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of New England
United States
Zip Code
McLane, Virginia D; Cao, Ling; Willis, Colin L (2014) Morphine increases hippocampal viral load and suppresses frontal lobe CCL5 expression in the LP-BM5 AIDS model. J Neuroimmunol 269:44-51
Camire, Ryan B; Beaulac, Holly J; Brule, Stephanie A et al. (2014) Biphasic modulation of paracellular claudin-5 expression in mouse brain endothelial cells is mediated through the phosphoinositide-3-kinase/AKT pathway. J Pharmacol Exp Ther 351:654-62
Li, Yingxue; St Louis, Lindsay; Knapp, Brian I et al. (2014) Can amphipathic helices influence the CNS antinociceptive activity of glycopeptides related to ?-endorphin? J Med Chem 57:2237-46
Burman, Michael A; Simmons, Cassandra A; Hughes, Miles et al. (2014) Developing and validating trace fear conditioning protocols in C57BL/6 mice. J Neurosci Methods 222:111-7
Meng, Ian D; Kurose, Masayuki (2013) The role of corneal afferent neurons in regulating tears under normal and dry eye conditions. Exp Eye Res 117:79-87
Wang, Yong; Lin, Lu; Lai, Helen et al. (2013) Transcription factor Sox11 is essential for both embryonic and adult neurogenesis. Dev Dyn 242:638-53