The substantia nigra, pars compacta (SNc) is a structure that modulates voluntary motor control, and the death of the dopaminergic neurons in the SNc leads to many of the classic motor deficits associated with the Parkinson's disease (PD). Most conventional treatments alleviate symptoms but do not prevent the eventual death of neurons in the SNc. While fetal tissue transplant and stem cell therapy serve to replace lost cells, incomplete knowledge on dopamine neuron development within the SNc has limited the effectiveness of these treatments as most cells in the transplant fail to survive. Elucidating the factors that modulate dopamine neural development could lead to novel treatment approaches or increase the effectiveness of these replacement therapies in PD. In the rat brain, progesterone receptors (PRs) are expressed transiently in the perinatal SNc, suggesting a role for this hormone in the development of this region. Dr. Mennella proposes to characterize the temporal expression pattern of progesterone receptors in the mouse substantia nigra and determine their roles in the morphological and phenotypic development of that region. She also proposes to use PR knock-out (PRKO) mice to determine if absence of PRs during development leads to greater dopaminergic cell loss in the adult SNc, and more immature projections into the straitum, the primary recipient of SNc dopamine projections and greater motor deficits in adulthood.

Public Health Relevance

Parkinson's disease (PD) is a devastating age-related movement disorder caused by the progressive death of brain cells. Identifying factors that contribute to the disease could aid in prevention and cessation of the disease. Developmental abnormalities in the brain may confer susceptibility to PD. Exposure to the hormone progesterone during development could protect the brain against the onset of PD.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-4)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Delaware State University
United States
Zip Code
Doherty, Tiffany S; Blaze, Jennifer; Keller, Samantha M et al. (2017) Phenotypic outcomes in adolescence and adulthood in the scarcity-adversity model of low nesting resources outside the home cage. Dev Psychobiol 59:703-714
Blaze, Jennifer; Asok, Arun; Borrelli, Kristyn et al. (2017) Intrauterine exposure to maternal stress alters Bdnf IV DNA methylation and telomere length in the brain of adult rat offspring. Int J Dev Neurosci 62:56-62
Shorey, Ryan C; Elmquist, Joanna; Gawrysiak, Michael J et al. (2017) A Randomized Controlled Trial of a Mindfulness and Acceptance Group Therapy for Residential Substance Use Patients. Subst Use Misuse 52:1400-1410
Medina, Alexandre E; Wozniak, Jeffrey R; Klintsova, Anna Y et al. (2017) Proceedings of the 2016 annual meeting of the Fetal Alcohol Spectrum Disorders Study Group. Alcohol 65:19-24
Blaze, Jennifer; Roth, Tania L (2017) Caregiver maltreatment causes altered neuronal DNA methylation in female rodents. Dev Psychopathol 29:477-489
Gawrysiak, Michael J; Jagannathan, Kanchana; Regier, Paul et al. (2017) Unseen scars: Cocaine patients with prior trauma evidence heightened resting state functional connectivity (RSFC) between the amygdala and limbic-striatal regions. Drug Alcohol Depend 180:363-370
Boppana, Sridhar; Lawal, Hakeem O (2017) Data on the specificity of an antibody to Drosophila vesicular acetylcholine transporter. Data Brief 15:257-261
Davis, Stephani A; Gan, Kok Ann; Dowell, James A et al. (2017) TDP-43 expression influences amyloid? plaque deposition and tau aggregation. Neurobiol Dis 103:154-162
Ruggiero, M J; Boschen, K E; Roth, T L et al. (2017) Sex Differences in Early Postnatal Microglial Colonization of the Developing Rat Hippocampus Following a Single-Day Alcohol Exposure. J Neuroimmune Pharmacol :
Boschen, K E; Klintsova, A Y (2017) Neurotrophins in the Brain: Interaction With Alcohol Exposure During Development. Vitam Horm 104:197-242

Showing the most recent 10 out of 86 publications