The human gastrointesfinal tract is populated with as many as 100 trillion bacteria that provide their host with dietary metabolites and protecfion against pathogens. Increasing evidence indicates appropriate intesfinal microbiota colonization during early stages of life is important for preventing immune-mediated diseases later in life. A key question is: How does the early intestinal microbiota provide these long-term benefits? Evidence is emerging that the human gut microbiota participates in the creation of epigenetic marks, thereby impacfing long-term gene regulafion with consequences for health. The intesfinal microbiota has also been implicated in obesity, a chronic inflammatory condifion now associated with eariy life events affecfing assembly of the gut microbiota, including cesarean secfions, anfibiofics, and formula feeding. These observafions suggest that disrupfion of the early gut microbiota may lead to metabolic deficiencies later in life through epigenetic mechanisms;however, the specific microbiotaregulated targets that influence the obese phenotype are currently unknown. Dr. Ramer-Tait will test the hypothesis that the lack of symbiotic microbiota during eariy development precipitates regulation of proinflammatory T cell phenotype genes via epigenetic mechanisms, with long-term consequences for metabolic health. She will combine gnotobiofic mouse models with high-throughput sequencing technologies to study the interacfions among the microbiota, the immune system, and the epigenome in the context of obesity. During her project. Dr. Ramer-Tait will employ her extensive training in immunology, microbiology, and gnotobiofic mouse models of inflammatory diseases. Her COBRE mentors include a well-respected molecular microbial ecologist with expertise in high throughput sequence analyses and a bioinformatician with vast expertise in analysis of large data sets derived from genome sequencing projects. This project will advance the thematic focus of the associated proposed Nebraska Center for the Prevention of Obesity Disease through Dietary Molecules by providing critical information about how the gut microbiota regulates the host immune system and precipitates metabolic diseases. By understanding these host-microbial relafionships, we can strategically design novel dietary interventions to control obesity by modulafing the intesfinal microbiota.

Public Health Relevance

Appreciation is growing for the role of non-dietary, environmental factors in obesity, including eariy-life events that impact intesfinal microbes and regulate the host epigenome. However, specific microbiotaregulated targets that influence the obese phenotype are currently unknown. This project will elucidate the interacfions among the microbiota, immune system, and epigenome in the context of obesity to facilitate future development of dietary strategies that modulate gut bacteria to prevent disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
1P20GM104320-01A1
Application #
8662976
Study Section
Special Emphasis Panel (ZGM1-TWD-C (C1))
Project Start
Project End
Budget Start
2014-08-05
Budget End
2015-05-31
Support Year
1
Fiscal Year
2014
Total Cost
$226,500
Indirect Cost
$76,500
Name
University of Nebraska Lincoln
Department
Type
DUNS #
555456995
City
Lincoln
State
NE
Country
United States
Zip Code
68583
Natarajan, Sathish Kumar; Muthukrishnan, Ezhumalai; Khalimonchuk, Oleh et al. (2017) Evidence for Pipecolate Oxidase in Mediating Protection Against Hydrogen Peroxide Stress. J Cell Biochem 118:1678-1688
Natarajan, Sathish Kumar; Rasineni, Karuna; Ganesan, Murali et al. (2017) Structure, Function and Metabolism of Hepatic and Adipose Tissue Lipid Droplets: Implications in Alcoholic Liver Disease. Curr Mol Pharmacol 10:237-248
Perez-Muñoz, Maria Elisa; Arrieta, Marie-Claire; Ramer-Tait, Amanda E et al. (2017) A critical assessment of the ""sterile womb"" and ""in utero colonization"" hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5:48
Gomes-Neto, João Carlos; Mantz, Sara; Held, Kyler et al. (2017) A real-time PCR assay for accurate quantification of the individual members of the Altered Schaedler Flora microbiota in gnotobiotic mice. J Microbiol Methods 135:52-62
Shu, Jiang; Silva, Bruno Vieira Resende E; Gao, Tian et al. (2017) Dynamic and Modularized MicroRNA Regulation and Its Implication in Human Cancers. Sci Rep 7:13356
Farris, Eric; Brown, Deborah M; Ramer-Tait, Amanda E et al. (2017) Chitosan-zein nano-in-microparticles capable of mediating in vivo transgene expression following oral delivery. J Control Release 249:150-161
Cadaret, Caitlin N; Beede, Kristin A; Riley, Hannah E et al. (2017) Acute exposure of primary rat soleus muscle to zilpaterol HCl (?2 adrenergic agonist), TNF?, or IL-6 in culture increases glucose oxidation rates independent of the impact on insulin signaling or glucose uptake. Cytokine 96:107-113
Shradhanjali, Akankshya; Riehl, Brandon D; Lee, Jeong Soon et al. (2017) Enhanced cardiomyogenic induction of mouse pluripotent cells by cyclic mechanical stretch. Biochem Biophys Res Commun 488:590-595
Zempleni, Janos; Aguilar-Lozano, Ana; Sadri, Mahrou et al. (2017) Biological Activities of Extracellular Vesicles and Their Cargos from Bovine and Human Milk in Humans and Implications for Infants. J Nutr 147:3-10
Song, Yongyan; Zhao, Miaoyun; Cheng, Xiao et al. (2017) CREBH mediates metabolic inflammation to hepatic VLDL overproduction and hyperlipoproteinemia. J Mol Med (Berl) 95:839-849

Showing the most recent 10 out of 48 publications