Loss of vascular homeostasis is a major contributor to the morbidity and mortality of diabetes, and treatments that restore or prevent loss of vascular homeostasis would be of immense value to diabetic patients. However, the processes leading to loss of vascular homeostasis are poorly understood, and effective treatments are not available. The long term goal is to better understand mechanisms underlying the loss of vascular homeostasis in diabetes in order to develop preventive and therapeutic protocols. Dysregulation of the 268 proteasome has been implicated in the loss of vascular homeostasis in diabetes. It appears to involve enhanced 268 proteasome functionality resulting in down regulation of nitric oxide (NO). The preliminary data suggests that NO itself regulates 268 proteasomes, a mechanism that might be compromised in diabetes. Therefore, the objective in this application is to identify how NO regulates 268 proteasomes. The central hypothesis is that eNOS-derived homeostatic levels of nitric oxide, via maintaining the 0-GlcNAc modification of the regulatory complex PA700 (Rpt2), functions as an endogenous inhibitor of 268 proteasomes to preserve vascular homeostasis, which is lost in diabetes. The rationale for the proposed research is that the identified mechanism may help to understand how vascular homeostasis is lost in patients of diabetes, epidemic of which is believed to hit half of this country by 2020. Guided by strong preliminary data, the hypothesis will be tested by pursuing two specific aims: 1) Determine if endothelial NO inhibits 268 proteasome functionality via maintaining 0-GlcNAc modification of the regulatory complex PA700 (Rpt2);and 2): Determine if pharmacologic or genetic strategies that restore eNOS-derived NO or enhance PA700 (Rpt2) 0-GlcNAc modification suppress 268 proteasome functionality and mitigate endothelial dysfunction in diabetes. The approach is innovative, because it utilizes a proteasome reporter system to study diabetic vascular endothelial function. The proposed research is also significant, because it is expected to provide insight into therapeutic interventions in addition to fundamentally advancing the fields of vascular medicine.

Public Health Relevance

The proposed research is relevant to public health, because the discovery of NO-mediated 268 proteasome regulation in the prevention of endothelial dysfunction.is expected to improve understanding of the pathogenesis of vascular homeostasis loss in diabetes. It also bears the hope of developing better preventive and therapeutic protocols to this common abnormality in people with diabetes.

Agency
National Institute of Health (NIH)
Type
Exploratory Grants (P20)
Project #
5P20GM104934-08
Application #
8692936
Study Section
Special Emphasis Panel (ZRR1)
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2014
Total Cost
Indirect Cost
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
Hu, Shuqun; Liu, Hua; Ha, Yonju et al. (2015) Posttranslational modification of Sirt6 activity by peroxynitrite. Free Radic Biol Med 79:176-85
McBride, Jeffrey D; Jenkins, Alicia J; Liu, Xiaochen et al. (2014) Elevated circulation levels of an antiangiogenic SERPIN in patients with diabetic microvascular complications impair wound healing through suppression of Wnt signaling. J Invest Dermatol 134:1725-34
Zhou, Kelu Kevin; Benyajati, Siribhinya; Le, Yun et al. (2014) Interruption of Wnt signaling in Müller cells ameliorates ischemia-induced retinal neovascularization. PLoS One 9:e108454
Moran, Elizabeth; Ding, Lexi; Wang, Zhongxiao et al. (2014) Protective and antioxidant effects of PPAR? in the ischemic retina. Invest Ophthalmol Vis Sci 55:4568-76
Fu, Shuhua; Zhu, Meili; Wang, Changyun et al. (2014) Efficient induction of productive Cre-mediated recombination in retinal pigment epithelium. Mol Vis 20:480-7
Takahashi, Yusuke; Moiseyev, Gennadiy; Ma, Jian-xing (2014) Identification of key residues determining isomerohydrolase activity of human RPE65. J Biol Chem 289:26743-51
Lee, Kyungwon; Shin, Younghwa; Cheng, Rui et al. (2014) Receptor heterodimerization as a novel mechanism for the regulation of Wnt/?-catenin signaling. J Cell Sci 127:4857-69
Fu, Suhua; Zhu, Meili; Ash, John D et al. (2014) Investigating the role of retinal Müller cells with approaches in genetics and cell biology. Adv Exp Med Biol 801:401-5
Crosswhite, Patrick; Chen, Kai; Sun, Zhongjie (2014) AAV delivery of tumor necrosis factor-? short hairpin RNA attenuates cold-induced pulmonary hypertension and pulmonary arterial remodeling. Hypertension 64:1141-50
Liu, Hongtao; Wang, Zhongxiao; Yu, Shujie et al. (2014) Proteasomal degradation of O-GlcNAc transferase elevates hypoxia-induced vascular endothelial inflammatory response†. Cardiovasc Res 103:131-9

Showing the most recent 10 out of 20 publications