Proteomics is a key element of the overall systems biology program proposed for the Center for Translational Pediatric Research (CTPR) and is an essential component of the Research Projects proposed by the COBRE Project Leaders. The Proteomics Core is an existing core facility that will be adapted and expanded to meet the research needs of the proposed COBRE Center. The state-of-the-art mass spectrometry resources, core personnel, and laboratory facilities already in place are strong and will continue to operate largely as they currently do but will be enhanced with cutting-edge technology needed by CTPR members. The Proteomics Core will coordinate closely with the CTPR Genomics and Systems Biology Bioinformatics Cores to provide a one-of-a-kind systems biology approach for pediatric disease research. This coordinated core structure will allow proteomics to be integrated into a cross-disciplinary framework capable of supporting the entire range of technologies and expertise needed for an effective systems biology approach for clinical and basic research. Close interaction between the Proteomics Core and COBRE Center Project Leaders will also lead to new innovations in research methods that will benefit future COBRE investigators as well as the broader campus research community. Opportunities and training in the systems biology technologies will be provided to CTPR members, the campus and researchers in Arkansas.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
1P20GM121293-01
Application #
9210172
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
1
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Arkansas Children's Hospital Research Institute
Department
Type
DUNS #
002593692
City
Little Rock
State
AR
Country
United States
Zip Code
72202
Bolouri, Hamid; Farrar, Jason E; Triche Jr, Timothy et al. (2018) The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med 24:103-112
Zhang, Xin; Zhang, Suping; Liu, Xingui et al. (2018) Oxidation resistance 1 is a novel senolytic target. Aging Cell :e12780
Lo, Dennis; Kennedy, Joshua L; Kurten, Richard C et al. (2018) Modulation of airway hyperresponsiveness by rhinovirus exposure. Respir Res 19:208
Salinas, Eduardo; Gupta, Arundhati; Sifford, Jeffrey M et al. (2018) Conditional mutagenesis in vivo reveals cell type- and infection stage-specific requirements for LANA in chronic MHV68 infection. PLoS Pathog 14:e1006865
Kennedy, Joshua L; Koziol-White, Cynthia J; Jeffus, Susanne et al. (2018) Effects of rhinovirus 39 infection on airway hyperresponsiveness to carbachol in human airways precision cut lung slices. J Allergy Clin Immunol 141:1887-1890.e1
Barham, Caroline; Fil, Daniel; Byrum, Stephanie D et al. (2018) RNA-Seq Analysis of Spinal Cord Tissues from hPFN1G118V Transgenic Mouse Model of ALS at Pre-symptomatic and End-Stages of Disease. Sci Rep 8:13737
Kriss, Crystina L; Gregory-Lott, Emily; Storey, Aaron J et al. (2018) In Vivo Metabolic Tracing Demonstrates the Site-Specific Contribution of Hepatic Ethanol Metabolism to Histone Acetylation. Alcohol Clin Exp Res 42:1909-1923
Dinwiddie, Darrell L; Denson, Jesse L; Kennedy, Joshua L (2018) Role of the Airway Microbiome in Respiratory Infections and Asthma in Children. Pediatr Allergy Immunol Pulmonol 31:236-240
Byrum, Stephanie D; Loughran, Allister J; Beenken, Karen E et al. (2018) Label-Free Proteomic Approach to Characterize Protease-Dependent and -Independent Effects of sarA Inactivation on the Staphylococcus aureus Exoproteome. J Proteome Res 17:3384-3395
Mao, Xiao W; Byrum, Stephanie; Nishiyama, Nina C et al. (2018) Impact of Spaceflight and Artificial Gravity on the Mouse Retina: Biochemical and Proteomic Analysis. Int J Mol Sci 19:

Showing the most recent 10 out of 16 publications