Functional brain imaging with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) has provided unique new insights into the functioning of the human brain. The brain signals detected by these imaging devices result from a combination of changes in local brain circulation and energy metabolism that offer a unique opportunity, heretofore unexplored, to examine synaptic function in the context of the synaptic homeostasis hypothesis proposed in this application. Two features of the imaging signals are particularly important in this regard. First, imaging based on circulatory and metabolic changes associated with brain function is singularly sensitive to changes in synaptic activity. This reflects the fact that dendrites and axon terminals have high surface-to-volume ratios making synaptic activity metabolically very demanding. Second, glutamatergic neurotransmission appears to account for a very large fraction of this metabolic activity and is uniquely identified in imaging signals due to the use of aerobic glycolysis by astrocytes to remove it from synapses. Because glutamate has been specifically identified as having an important role in learning and memory, this interesting combination of factors places brain imaging with PET and fMRI in a unique position to test important aspects of the synaptic homeostasis hypothesis. In the proposed experiments we will utilize both PET and fMRI along with EEC. We hypothesize that learning will be associated with persistent, regionally specific increases in brain aerobic glycolysis in the resting state (awake, lying quietly with eyes closed) which will be manifest not only as an increase in glucose metabolism that is greater than any increase in oxygen consumption as measured with PET but also in an increase in the spontaneous fluctuations in the fMRI BOLD signal, an important indicator of the intrinsic activity and organization of the brain. Further, we predict that these learning induced changes.will return to baseline following a night of normal sleep but will not do so if SWS is selectively disrupted. We believe that these experiments will provide critical new information relevant to our understanding of the synaptic homeostasis hypothesis. It is important to note that this research is proposed to take place in the context of a new and important collaboration among investigators with highly complementary talents and interests. This is a unique opportunity for all concerned.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Exploratory Grants (P20)
Project #
5P20MH077967-04
Application #
8118164
Study Section
Special Emphasis Panel (ZMH1)
Project Start
2010-07-01
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2012-06-30
Support Year
4
Fiscal Year
2010
Total Cost
$369,924
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Siclari, Francesca; Bernardi, Giulio; Cataldi, Jacinthe et al. (2018) Dreaming in NREM Sleep: A High-Density EEG Study of Slow Waves and Spindles. J Neurosci 38:9175-9185
Sanders, R D; Mostert, N; Lindroth, H et al. (2018) Is consciousness frontal? Two perioperative case reports that challenge that concept. Br J Anaesth 121:330-332
Sanders, R D; Banks, M I; Darracq, M et al. (2018) Propofol-induced unresponsiveness is associated with impaired feedforward connectivity in cortical hierarchy. Br J Anaesth 121:1084-1096
Darracq, Matthieu; Funk, Chadd M; Polyakov, Daniel et al. (2018) Evoked Alpha Power is Reduced in Disconnected Consciousness During Sleep and Anesthesia. Sci Rep 8:16664
Ferrarelli, Fabio; Tononi, Giulio (2017) Reduced sleep spindle activity point to a TRN-MD thalamus-PFC circuit dysfunction in schizophrenia. Schizophr Res 180:36-43
Siclari, Francesca; Baird, Benjamin; Perogamvros, Lampros et al. (2017) The neural correlates of dreaming. Nat Neurosci 20:872-878
Perogamvros, Lampros; Baird, Benjamin; Seibold, Mitja et al. (2017) The Phenomenal Contents and Neural Correlates of Spontaneous Thoughts across Wakefulness, NREM Sleep, and REM Sleep. J Cogn Neurosci 29:1766-1777
Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M et al. (2017) Loss of Brain Aerobic Glycolysis in Normal Human Aging. Cell Metab 26:353-360.e3
Castelnovo, Anna; Riedner, Brady A; Smith, Richard F et al. (2016) Scalp and Source Power Topography in Sleepwalking and Sleep Terrors: A High-Density EEG Study. Sleep 39:1815-1825
Riedner, Brady A; Goldstein, Michael R; Plante, David T et al. (2016) Regional Patterns of Elevated Alpha and High-Frequency Electroencephalographic Activity during Nonrapid Eye Movement Sleep in Chronic Insomnia: A Pilot Study. Sleep 39:801-12

Showing the most recent 10 out of 67 publications