This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Recent studies suggest that decreased inhibitory signaling by neurons releasing gamma-aminobutyric acid (GABA) in the prefrontal cortex of the schizophrenic brain may cause abnormal neural circuit activity and impaired cognition. Drugs that normalize GABAergic tone may thus restore or improve cognitive function. The proposed studies will test these hypotheses by manipulating GABA system activity within the prefrontal cortex of male Sprague-Dawley rats. Drugs acting at cannabinoid receptors or neurosteroid binding sites will be administered via intracranial microinjection into the medial prefrontal cortex before behavior testing. Two series of experiments will assess drug treatment effects on prefrontal-dependent cogntive function, and assess whether treatments can reverse cognitive deficits induced by pretreatment with the NMDA receptor antagonist MK-801. Low dose NMDA antagonist adminsistration is a widely used preclinical model of schizophrenia. One series of experiments will examine effects of cannabinoid receptor modulators on performance of behavior tasks that measure working memory, selective attention, and cognitive flexibility (set-shifting). The other series of experiments will study the effects of select neurosteroids on these same cognitive measures. We hypothesisze that select cannabinoid and neurosteroid modulators which reduce prefrontal GABAergic neurotransmission will exacerbate cognitive deficits, whereas compounds which increase GABAergic tone will attenuate or block cognitive impairments.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016462-10
Application #
8360437
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
10
Fiscal Year
2011
Total Cost
$80,372
Indirect Cost
Name
University of Vermont & St Agric College
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
066811191
City
Burlington
State
VT
Country
United States
Zip Code
05405
Wagner, Benjamin A; Braddick, Valerie C; Batson, Christopher G et al. (2018) Effects of testosterone dose on spatial memory among castrated adult male rats. Psychoneuroendocrinology 89:120-130
Mireault, Gina C; Crockenberg, Susan C; Heilman, Keri et al. (2018) Social, cognitive, and physiological aspects of humour perception from 4 to 8 months: Two longitudinal studies. Br J Dev Psychol 36:98-109
Mireault, Gina C; Rainville, Brady S; Laughlin, Breanna (2018) Push or Carry? Pragmatic Opportunities for Language Development in Strollers vs. Backpacks. Infancy 23:616-624
Mireault, Gina C (2017) Laughing MATTERS. Sci Am Mind 28:33-37
Nock, Adam M; Wargo, Matthew J (2016) Choline Catabolism in Burkholderia thailandensis Is Regulated by Multiple Glutamine Amidotransferase 1-Containing AraC Family Transcriptional Regulators. J Bacteriol 198:2503-14
Spritzer, M D; Curtis, M G; DeLoach, J P et al. (2016) Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats. Neuroscience 318:143-56
Hinkle, Karen L; Anderson, Chad C; Forkey, Blake et al. (2016) Exposure to the lampricide 3-trifluoromethyl-4-nitrophenol results in increased expression of carbohydrate transporters in Saccharomyces cerevisiae. Environ Toxicol Chem 35:1727-32
Reddy, Vasudevi; Mireault, Gina (2015) Teasing and clowning in infancy. Curr Biol 25:R20-3
Symeonides, Menelaos; Murooka, Thomas T; Bellfy, Lauren N et al. (2015) HIV-1-Induced Small T Cell Syncytia Can Transfer Virus Particles to Target Cells through Transient Contacts. Viruses 7:6590-603
Xie, Yi; Jin, Yu; Merenick, Bethany L et al. (2015) Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition. Sci Signal 8:ra44

Showing the most recent 10 out of 178 publications