This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Aging is characterized by a steady decline in an organism's ability to perform life-sustaining tasks. All organisms age, and this process is partially controlled by the regulation of gene expression. The lifespan of an organism is based on extrinsic factors, genes, and gene-environment interactions. Gene?environment interactions are of considerable interest because they are especially relevant to aging in human populations that are not environmentally controlled. Little is known about the genetics of aging in most animals and even less is known in natural populations of species used as models for genetic research. For genetic analyses of aging, Drosophila melanogaster (fruit fly) is a useful model organism due to the genetic and genomic tools available, and ability to compare to humans because of the similarity in genes. Transcriptome studies have been conducted on D. melanogaster, but not in large populations that allow for many samples to be taken and for flies to be sampled at very old ages when all but a very small proportion of a cohort has died. The value of taking many samples is that temporal trends in gene expression become much clearer allowing for the identification of candidate genes that may be acting in a similar manner and, in fact, might allow for the identification of networks of gene expression. Replicate populations are valuable because they allow for identification of candidate genes whose pattern of expression is robust across populations. The main goal of the proposed research is to utilize use large laboratory populations of D. melanogaster recently derived from a natural population and thereby representing natural genetic variation to obtain comprehensive transcriptome profiles throughout the adult life span. The goals of this project are: 1) conduct a transcriptome analysis of large replicate populations recently derived from the field 2) validate the pattern of expression of candidate genes, 3) use mutations and P-element lines to test the effect of candidate genes. The overall goal of this research is to better understand the role of genes representing natural genetic variation throughout adult life including the very oldest ages, which is expected to provide unique insight into aging and longevity.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Nebraska Medical Center
Schools of Medicine
United States
Zip Code
Gerald, Gary W; Thompson, Moriah M; Levine, Todd D et al. (2017) Interactive effects of leg autotomy and incline on locomotor performance and kinematics of the cellar spider, Pholcus manueli. Ecol Evol 7:6729-6735
Gong, Qiang; Wang, Chao; Zhang, Weiwei et al. (2017) Assessment of T-cell receptor repertoire and clonal expansion in peripheral T-cell lymphoma using RNA-seq data. Sci Rep 7:11301
Bouska, A; Zhang, W; Gong, Q et al. (2017) Combined copy number and mutation analysis identifies oncogenic pathways associated with transformation of follicular lymphoma. Leukemia 31:83-91
Lu, Guoqing; Luhr, Jamie; Stoecklein, Andrew et al. (2017) Complete Genome Sequences of Pseudomonas fluorescens Bacteriophages Isolated from Freshwater Samples in Omaha, Nebraska. Genome Announc 5:
Azadmanesh, Jahaun; Trickel, Scott R; Borgstahl, Gloria E O (2017) Substrate-analog binding and electrostatic surfaces of human manganese superoxide dismutase. J Struct Biol 199:68-75
Donze-Reiner, Teresa; Palmer, Nathan A; Scully, Erin D et al. (2017) Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs. BMC Plant Biol 17:46
Quispe, Cristian F; Esmael, Ahmed; Sonderman, Olivia et al. (2017) Characterization of a new chlorovirus type with permissive and non-permissive features on phylogenetically related algal strains. Virology 500:103-113
Carlson, Kimberly A; Zhang, Chi; Harshman, Lawrence G (2016) A dataset for assessing temporal changes in gene expression during the aging process of adult Drosophila melanogaster. Data Brief 7:1652-7
Tietze, S M; Gerald, G W (2016) Trade-offs between salinity preference and antipredator behaviour in the euryhaline sailfin molly Poecilia latipinna. J Fish Biol 88:1918-31
Ericson, Brad L; Carlson, Darby J; Carlson, Kimberly A (2016) Characterization of Nora Virus Structural Proteins via Western Blot Analysis. Scientifica (Cairo) 2016:9067848

Showing the most recent 10 out of 316 publications